Namespaces
Variants
Actions

Difference between revisions of "Pseudo-Galilean space"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(gather refs)
 
Line 49: Line 49:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  B.A. Rozenfel'd,  "Non-Euclidean spaces" , Moscow  (1969)  (In Russian)</TD></TR>
 
+
<TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  "Non-Euclidean geometry" , Univ. Toronto Press  (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)  pp. Chapt. X</TD></TR></table>
====Comments====
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.S.M. Coxeter,  "Non-Euclidean geometry" , Univ. Toronto Press  (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S. Helgason,  "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press  (1978)  pp. Chapt. X</TD></TR></table>
 

Latest revision as of 13:52, 8 April 2023


A projective - space (cf. Projective space) with a distinguished infinitely-distant ( n - 1 ) - plane T _ {0} in the affine n - space (cf. Affine space) in which in turn an infinitely-distant ( n - 2 ) - plane T _ {1} of the pseudo-Euclidean space {} ^ {l} R _ {n-} 1 has been distinguished, while in T _ {1} an ( n - 3 ) - quadric Q _ {2} has been distinguished which is the absolute of the hyperbolic ( n - 1 ) - space of index l . The family of planes T _ {0} , T _ {1} and quadric Q _ {2} forms the absolute (basis) of the pseudo-Galilean space; the latter is denoted by {} ^ {l} \Gamma _ {n} . E.g., 3 - space {} ^ {1} \Gamma _ {3} has as absolute a 2 - plane T _ {0} , a straight line T _ {1} in T _ {0} and a pair of real points Q _ {2} on T _ {1} . A pseudo-Galilean space can be defined as an affine n - space in whose infinitely-distant hyperbolic hyperplane under completion to projective n - space the geometry of the pseudo-Euclidean ( n - 1 ) - space of index l has been defined.

The distance between points is defined analogously to the distance in a Galilean space.

The motions of {} ^ {l} \Gamma _ {n} are its collineations mapping the absolute into itself. The motions form a group, which is a Lie group.

The space whose absolute is dual to the absolute of {} ^ {l} \Gamma _ {n} is called a co-pseudo-Galilean space. A flag space is a limit case of {} ^ {l} \Gamma _ {n} .

References

[1] B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)
[a1] H.S.M. Coxeter, "Non-Euclidean geometry" , Univ. Toronto Press (1968)
[a2] S. Helgason, "Differential geometry, Lie groups, and symmetric spaces" , Acad. Press (1978) pp. Chapt. X
How to Cite This Entry:
Pseudo-Galilean space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-Galilean_space&oldid=48341
This article was adapted from an original article by L.A. Sidorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article