Difference between revisions of "Pontryagin invariant"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (gather refs) |
||
(One intermediate revision by one other user not shown) | |||
Line 14: | Line 14: | ||
be a closed orientable surface with an $ n $- | be a closed orientable surface with an $ n $- | ||
dimensional framing $ U $ | dimensional framing $ U $ | ||
− | in $ S ^ {n+} | + | in $ S ^ {n+2} $, |
i.e. a trivialization of the normal $ n $- | i.e. a trivialization of the normal $ n $- | ||
dimensional [[Vector bundle|vector bundle]] of the surface $ M ^ {2} $ | dimensional [[Vector bundle|vector bundle]] of the surface $ M ^ {2} $ | ||
− | in $ S ^ {n+} | + | in $ S ^ {n+2} $. |
Any element $ z \in H _ {1} ( M ^ {2} , \mathbf Z ) $ | Any element $ z \in H _ {1} ( M ^ {2} , \mathbf Z ) $ | ||
can be realized by a smoothly immersed circle with self-intersections which are only double points and transversal. Let some orientation of the circle $ S ^ {1} $ | can be realized by a smoothly immersed circle with self-intersections which are only double points and transversal. Let some orientation of the circle $ S ^ {1} $ | ||
Line 24: | Line 24: | ||
restricted to the point $ f ( y) $, | restricted to the point $ f ( y) $, | ||
$ y \in C $; | $ y \in C $; | ||
− | let $ u _ {n+} | + | let $ u _ {n+2} ( y) $ |
be the tangent vector to the curve $ C = f ( S ^ {1} ) $ | be the tangent vector to the curve $ C = f ( S ^ {1} ) $ | ||
at the point $ f ( y) $ | at the point $ f ( y) $ | ||
with respect to the chosen orientation of $ S ^ {1} $; | with respect to the chosen orientation of $ S ^ {1} $; | ||
− | and let $ u _ {n+} | + | and let $ u _ {n+1} ( y) $ |
be the tangent vector to $ M ^ {2} $ | be the tangent vector to $ M ^ {2} $ | ||
at $ f ( y) $ | at $ f ( y) $ | ||
− | orthogonal to $ u _ {n+} | + | orthogonal to $ u _ {n+2} ( y) $ |
− | and oriented such that the sequence of vectors $ u _ {1} ( y) \dots u _ {n} ( y) , u _ {n+} | + | and oriented such that the sequence of vectors $ u _ {1} ( y) \dots u _ {n} ( y) , u _ {n+1} ( y) , u _ {n+2} ( y) $ |
− | gives the standard orientation of the sphere $ S ^ {n+} | + | gives the standard orientation of the sphere $ S ^ {n+2} $. |
− | The mapping $ h : S ^ {1} \rightarrow \mathop{\rm SO} _ {n+} | + | The mapping $ h : S ^ {1} \rightarrow \mathop{\rm SO} _ {n+2} $ |
− | thus arising defines an element of the group $ \pi _ {1} ( \mathop{\rm SO} _ {n+} | + | thus arising defines an element of the group $ \pi _ {1} ( \mathop{\rm SO} _ {n+2} ) $( |
which is isomorphic to $ \mathbf Z _ {2} $ | which is isomorphic to $ \mathbf Z _ {2} $ | ||
for $ n \geq 1 $). | for $ n \geq 1 $). | ||
Line 66: | Line 66: | ||
is zero (Pontryagin's theorem). The Pontryagin invariant can be realized by an $ ( n + 2 ) $- | is zero (Pontryagin's theorem). The Pontryagin invariant can be realized by an $ ( n + 2 ) $- | ||
dimensional framing of the torus, $ n \geq 2 $, | dimensional framing of the torus, $ n \geq 2 $, | ||
− | and is the unique invariant of two-dimensional framed [[Cobordism|cobordism]]. The Pontryagin invariant defines an isomorphism $ \pi _ {n+} | + | and is the unique invariant of two-dimensional framed [[Cobordism|cobordism]]. The Pontryagin invariant defines an isomorphism $ \pi _ {n+2} ( S ^ {n} ) \approx \mathbf Z _ {2} $, |
$ n \geq 2 $. | $ n \geq 2 $. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian)</TD></TR> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968)</TD></TR> | |
− | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> J.W. Milnor, "Toplogy from the differentiable viewpoint" , Univ. Virginia Press (1966)</TD></TR> | |
− | + | </table> | |
− |
Latest revision as of 17:40, 5 April 2023
An invariant of framed constructions of surfaces with a given framing. Let $ ( M ^ {2} , U ) $
be a closed orientable surface with an $ n $-
dimensional framing $ U $
in $ S ^ {n+2} $,
i.e. a trivialization of the normal $ n $-
dimensional vector bundle of the surface $ M ^ {2} $
in $ S ^ {n+2} $.
Any element $ z \in H _ {1} ( M ^ {2} , \mathbf Z ) $
can be realized by a smoothly immersed circle with self-intersections which are only double points and transversal. Let some orientation of the circle $ S ^ {1} $
be fixed; let $ u _ {1} ( y) \dots u _ {n} ( y) $
be orthogonal vectors from $ U $
restricted to the point $ f ( y) $,
$ y \in C $;
let $ u _ {n+2} ( y) $
be the tangent vector to the curve $ C = f ( S ^ {1} ) $
at the point $ f ( y) $
with respect to the chosen orientation of $ S ^ {1} $;
and let $ u _ {n+1} ( y) $
be the tangent vector to $ M ^ {2} $
at $ f ( y) $
orthogonal to $ u _ {n+2} ( y) $
and oriented such that the sequence of vectors $ u _ {1} ( y) \dots u _ {n} ( y) , u _ {n+1} ( y) , u _ {n+2} ( y) $
gives the standard orientation of the sphere $ S ^ {n+2} $.
The mapping $ h : S ^ {1} \rightarrow \mathop{\rm SO} _ {n+2} $
thus arising defines an element of the group $ \pi _ {1} ( \mathop{\rm SO} _ {n+2} ) $(
which is isomorphic to $ \mathbf Z _ {2} $
for $ n \geq 1 $).
Let $ \beta = 0 $
if $ h $
is homotopic to zero and $ \beta = 1 $
if $ h $
is not homotopic to zero. Let the value of the function $ \Phi _ {0} : H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z _ {2} $
be equal to the sum modulo 2 of the number of double points of the curve $ C $
realizing the element $ z $
and the number $ \beta $
defined by $ C $.
Thus, a given value of $ \Phi _ {0} ( z) $
depends only on the homology class of $ z $,
and the function $ \Phi _ {0} ( z) $
satisfies the following condition:
$$ \Phi _ {0} ( z _ {1} + z _ {2} ) = \Phi _ {0} ( z _ {1} ) + \Phi _ {0} ( z _ {2} ) + \Phi ( z _ {1} , z _ {2} ) \ \mathop{\rm mod} 2 , $$
where $ \Phi : H _ {1} ( M ^ {2} , \mathbf Z ) \times H _ {1} ( M ^ {2} , \mathbf Z ) \rightarrow \mathbf Z $ is the intersection form of one-dimensional homologies of the surface $ M ^ {2} $. The Arf-invariant of $ \Phi _ {0} $ is called the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $. The pair $ ( M ^ {2} , U ) $ admits a framed surgery to the pair $ ( S ^ {2} , U ) $ if and only if the Pontryagin invariant of the pair $ ( M ^ {2} , U ) $ is zero (Pontryagin's theorem). The Pontryagin invariant can be realized by an $ ( n + 2 ) $- dimensional framing of the torus, $ n \geq 2 $, and is the unique invariant of two-dimensional framed cobordism. The Pontryagin invariant defines an isomorphism $ \pi _ {n+2} ( S ^ {n} ) \approx \mathbf Z _ {2} $, $ n \geq 2 $.
References
[1] | L.S. Pontryagin, "Smooth manifolds and their applications in homology theory" , Moscow (1976) (In Russian) |
[a1] | R.E. Stong, "Notes on cobordism theory" , Princeton Univ. Press (1968) |
[a2] | J.W. Milnor, "Toplogy from the differentiable viewpoint" , Univ. Virginia Press (1966) |
Pontryagin invariant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_invariant&oldid=48241