Difference between revisions of "Lebesgue function"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 15: | Line 15: | ||
$$ | $$ | ||
L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } | L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } | ||
− | \left | \sum _ { k= } | + | \left | \sum _ { k=1 } ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] , |
$$ | $$ | ||
− | where $ \Phi = \{ \phi _ {k} \} _ {k=} | + | where $ \Phi = \{ \phi _ {k} \} _ {k=1} ^ \infty $ |
is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval $ [ a , b ] $, | is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval $ [ a , b ] $, | ||
$ n = 1 , 2 , . . . $. | $ n = 1 , 2 , . . . $. | ||
Line 33: | Line 33: | ||
$$ | $$ | ||
− | S _ {n} ( f ) ( t) = \sum _ { k= } | + | S _ {n} ( f ) ( t) = \sum _ { k=1 } ^ { n } |
c _ {k} ( f ) \phi _ {k} ( t) | c _ {k} ( f ) \phi _ {k} ( t) | ||
$$ | $$ | ||
− | is the $ n $- | + | is the $ n $-th partial sum of the [[Fourier series|Fourier series]] of $ f $ |
− | th partial sum of the [[Fourier series|Fourier series]] of $ f $ | ||
with respect to $ \Phi $. | with respect to $ \Phi $. | ||
In the case when $ \Phi $ | In the case when $ \Phi $ |
Latest revision as of 19:29, 28 February 2021
A function
$$ L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } \left | \sum _ { k=1 } ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] , $$
where $ \Phi = \{ \phi _ {k} \} _ {k=1} ^ \infty $ is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval $ [ a , b ] $, $ n = 1 , 2 , . . . $. Lebesgue functions are defined similarly in the case when an orthonormal system is specified on an arbitrary measure space. One has
$$ L _ {n} ^ \Phi ( t) = \ \sup _ {f : \| f \| _ {C [ a , b ] } \leq 1 } | S _ {n} ( f ) | ,\ \ t \in [ a , b ] , $$
where
$$ S _ {n} ( f ) ( t) = \sum _ { k=1 } ^ { n } c _ {k} ( f ) \phi _ {k} ( t) $$
is the $ n $-th partial sum of the Fourier series of $ f $ with respect to $ \Phi $. In the case when $ \Phi $ is the trigonometric system, the Lebesgue functions are constant and reduce to the Lebesgue constants. They were introduced by H. Lebesgue.
References
[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
Lebesgue function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_function&oldid=47601