# Lebesgue function

A function

$$ L _ {n} ^ \Phi ( t) = \int\limits _ { a } ^ { b } \left | \sum _ { k= } 1 ^ { n } \phi _ {k} ( x) \phi _ {k} ( t) \right | d x ,\ t \in [ a , b ] , $$

where $ \Phi = \{ \phi _ {k} \} _ {k=} 1 ^ \infty $ is a given system of functions, orthonormal with respect to the Lebesgue measure on the interval $ [ a , b ] $, $ n = 1 , 2 , . . . $. Lebesgue functions are defined similarly in the case when an orthonormal system is specified on an arbitrary measure space. One has

$$ L _ {n} ^ \Phi ( t) = \ \sup _ {f : \| f \| _ {C [ a , b ] } \leq 1 } | S _ {n} ( f ) | ,\ \ t \in [ a , b ] , $$

where

$$ S _ {n} ( f ) ( t) = \sum _ { k= } 1 ^ { n } c _ {k} ( f ) \phi _ {k} ( t) $$

is the $ n $- th partial sum of the Fourier series of $ f $ with respect to $ \Phi $. In the case when $ \Phi $ is the trigonometric system, the Lebesgue functions are constant and reduce to the Lebesgue constants. They were introduced by H. Lebesgue.

#### References

[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |

**How to Cite This Entry:**

Lebesgue function.

*Encyclopedia of Mathematics.*URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_function&oldid=47601