Difference between revisions of "Lebesgue constants"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(→References: isbn link) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 83: | Line 83: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR> | + | <table> |
− | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''1''' , Cambridge Univ. Press (1988)</TD></TR> | |
− | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapts. 4&6</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2</TD></TR></table> | |
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 95: | Line 92: | ||
$$ | $$ | ||
− | \lambda _ {n} = \max _ {a \leq x \leq b } \sum _ { k= } | + | \lambda _ {n} = \max _ {a \leq x \leq b } \sum _ { k= 0} ^ { n } | |
l _ {nk} ( x) | ,\ n = 1 , 2 \dots | l _ {nk} ( x) | ,\ n = 1 , 2 \dots | ||
$$ | $$ | ||
Line 160: | Line 157: | ||
$$ | $$ | ||
− | \lambda _ {nm} = \max _ {a \leq x \leq b } \sum _ { k= } | + | \lambda _ {nm} = \max _ {a \leq x \leq b } \sum _ { k= 1 }^ { n } | |
l _ {nk} ^ {(} m) ( x) | ,\ n = 0 , 1 \dots | l _ {nk} ^ {(} m) ( x) | ,\ n = 0 , 1 \dots | ||
$$ | $$ | ||
Line 202: | Line 199: | ||
such that $ \lambda _ {n} $ | such that $ \lambda _ {n} $ | ||
is minimal, has been given much attention. S.N. Bernstein [S.N. Bernshtein] (1931) conjectured that $ \lambda _ {n} $ | is minimal, has been given much attention. S.N. Bernstein [S.N. Bernshtein] (1931) conjectured that $ \lambda _ {n} $ | ||
− | is minimal when $ \sum _ {k=} | + | is minimal when $ \sum _ {k= 0} ^ {n} | l _ {n k } ( x) | $" |
equi-oscillates" . Bernstein's conjecture was proved by T.A. Kilgore (cf. [[#References|[a1]]]); historical notes are also included there. | equi-oscillates" . Bernstein's conjecture was proved by T.A. Kilgore (cf. [[#References|[a1]]]); historical notes are also included there. | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> T.A. Kilgore, "A characterization of the Lagrange interpolation projection with minimal Tchebycheff norm" ''J. Approx. Theory'' , '''24''' (1978) pp. 273–288</TD></TR> |
− | <TR><TD valign="top">[a2]</TD> <TD valign="top"> | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2</TD></TR> |
− | <TR><TD valign="top">[a3]</TD> <TD valign="top"> | + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> Steven R. Finch, ''Mathematical Constants'', Cambridge University Press (2003) {{ISBN|0-521-81805-2}}. Sect. 4.2</TD></TR> |
</table> | </table> |
Latest revision as of 20:31, 15 November 2023
The quantities
$$ L _ {n} = \frac{1} \pi \int\limits _ {- \pi } ^ \pi | D _ {n} ( t) | dt , $$
where
$$ D _ {n} ( t) = \frac{\sin \left ( \frac{2n + 1 }{2} t \right ) }{2 \sin ( t/2 ) } $$
is the Dirichlet kernel. The Lebesgue constants $ L _ {n} $ for each $ n $ equal:
1) the maximum value of $ | S _ {n} ( f , x ) | $ for all $ x $ and all continuous functions $ f $ such that $ | f ( t) | \leq 1 $ for almost-all $ t $;
2) the least upper bound of $ | S _ {n} ( f , x ) | $ for all $ x $ and all continuous functions $ f $ such that $ | f ( t) | \leq 1 $;
3) the least upper bound of the integrals
$$ \int\limits _ { 0 } ^ { {2 } \pi } | S _ {n} ( f , x ) | dx $$
for all functions $ f $ such that
$$ \int\limits _ { 0 } ^ { {2 } \pi } | f ( t) | dt \leq 1 . $$
Here $ S _ {n} ( f , x ) $ is the $ n $- th partial sum of the trigonometric Fourier series of the $ 2 \pi $- periodic function $ f $. The following asymptotic formula is valid:
$$ L _ {n} = \frac{4}{\pi ^ {2} } \mathop{\rm ln} n + O ( 1) ,\ n \rightarrow \infty . $$
In particular, $ L _ {n} \rightarrow \infty $ as $ n \rightarrow \infty $; this is connected with the divergence of the trigonometric Fourier series of certain continuous functions. In a wider sense the Lebesgue constants are defined for other orthonormal systems (cf. Orthogonal system) as the quantities
$$ L _ {n} = \mathop{\rm esssup} _ {x \in ( a , b ) } \int\limits _ { a } ^ { b } | D _ {n} ( x , t ) | dt , $$
where $ D _ {n} ( x , t ) $ is the Dirichlet kernel for the given orthonormal system of functions on $ ( a , b ) $; they play an important role in questions of convergence of Fourier series in these systems. The Lebesgue constants were introduced by H. Lebesgue (1909). See also Lebesgue function.
References
[1] | A. Zygmund, "Trigonometric series" , 1 , Cambridge Univ. Press (1988) |
[a1] | E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapts. 4&6 |
[a2] | T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2 |
Comments
The Lebesgue constants of an interpolation process are the numbers
$$ \lambda _ {n} = \max _ {a \leq x \leq b } \sum _ { k= 0} ^ { n } | l _ {nk} ( x) | ,\ n = 1 , 2 \dots $$
where
$$ l _ {nk} ( x) = \prod _ {j \neq k } \frac{x - x _ {j} }{x _ {k} - x _ {j} } $$
and $ x _ {0} \dots x _ {n} $ are pairwise distinct interpolation points lying in some interval $ [ a , b ] $.
Let $ C [ a , b ] $ and $ {\mathcal P} _ {n} [ a , b ] $ be, respectively, the space of continuous functions on $ [ a , b ] $ and the space of algebraic polynomials of degree at most $ n $, considered on the same interval, with the uniform metric, and let $ P _ {n} ( x , f ) $ be the interpolation polynomial of degree $ \leq n $ that takes the same values at the points $ x _ {k} $, $ k = 0 \dots n $, as $ f $. If $ P _ {n} $ denotes the operator that associates $ P _ {n} ( x , f ) $ with $ f ( x) $, i.e. $ P _ {n} : C [ a , b ] \rightarrow {\mathcal P} _ {n} [ a , b ] $, then $ \| P _ {n} \| = \lambda _ {n} $, where the left-hand side is the operator norm in the space of bounded linear operators $ {\mathcal L} ( C [ a , b ] , P _ {n} [ a , b ] ) $ and
$$ \| f ( x) - P _ {n} ( x , f ) \| _ {C [ a , b ] } \leq ( 1 + \lambda _ {n} ) E _ {n} ( f ) , $$
where $ E _ {n} ( f ) $ is the best approximation of $ f $ by algebraic polynomials of degree at most $ n $.
For any choice of the interpolation points in $ [ a , b ] $, one has $ \lim\limits _ {n \rightarrow \infty } \lambda _ {n} = + \infty $. For equidistant points a constant $ c > 0 $ exists such that $ \lambda _ {n} \geq c 2 ^ {n} n ^ {- 3/2 } $. In case of the interval $ [ - 1 , 1 ] $, for points coinciding with the zeros of the $ n $- th Chebyshev polynomial, the Lebesgue constants have minimum order of growth, namely
$$ \lambda _ {n} \approx \mathop{\rm ln} n . $$
If $ f $ is $ m $ times differentiable on $ [ a , b ] $, $ Y = \{ y _ {k} \} _ {k=} 0 ^ {n} $ is a given set of numbers ( "approximations of the values fxk" ), $ P _ {n} ( x , Y ) $ is the interpolation polynomial of degree $ \leq n $ that takes the values $ y _ {k} $ at the points $ x _ {k} $, $ k = 0 \dots n $, and
$$ \lambda _ {nm} = \max _ {a \leq x \leq b } \sum _ { k= 1 }^ { n } | l _ {nk} ^ {(} m) ( x) | ,\ n = 0 , 1 \dots $$
then
$$ \| f ^ { ( m) } ( x) - P _ {n} ^ {(} m) ( x , Y ) \| _ {C [ a , b ] } \leq $$
$$ \leq \ \| f ^ { ( m) } ( x) - P _ {n} ^ {(} m) ( x , f ) \| _ {C [ a , b ] } + $$
$$ + \lambda _ {nm} \max _ {k = 0 \dots n } | f ( x _ {k} ) - y _ {k} | . $$
The Lebesgue constants $ \lambda _ {nm} $ of an arbitrary interval $ [ a , b ] $ are connected with the analogous constants $ \Lambda _ {nm} $ for the interval $ [ - 1 , 1 ] $ by the relation
$$ \Lambda _ {nm} = \left ( b- \frac{a}{2} \right ) ^ {m} \lambda _ {nm} ; $$
in particular, $ \lambda _ {n} = \Lambda _ {n0} $.
L.D. Kudryavtsev
Comments
The problem to determine "optimal nodes" , i.e., for $ n $ a fixed positive integer $ \geq 2 $, to determine $ x _ {0} \dots x _ {n} $ such that $ \lambda _ {n} $ is minimal, has been given much attention. S.N. Bernstein [S.N. Bernshtein] (1931) conjectured that $ \lambda _ {n} $ is minimal when $ \sum _ {k= 0} ^ {n} | l _ {n k } ( x) | $" equi-oscillates" . Bernstein's conjecture was proved by T.A. Kilgore (cf. [a1]); historical notes are also included there.
References
[a1] | T.A. Kilgore, "A characterization of the Lagrange interpolation projection with minimal Tchebycheff norm" J. Approx. Theory , 24 (1978) pp. 273–288 |
[a2] | T.J. Rivlin, "An introduction to the approximation of functions" , Blaisdell (1969) pp. Sect. 4.2 |
[a3] | Steven R. Finch, Mathematical Constants, Cambridge University Press (2003) ISBN 0-521-81805-2. Sect. 4.2 |
Lebesgue constants. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lebesgue_constants&oldid=47600