Difference between revisions of "Inverse hyperbolic functions"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(latex details) |
||
Line 11: | Line 11: | ||
{{TEX|done}} | {{TEX|done}} | ||
− | Functions inverse to the [[ | + | Functions inverse to the [[hyperbolic functions]]. The inverse hyperbolic functions are the inverse hyperbolic sine, cosine and tangent: $ \sinh ^ {-1} x $, |
− | $ \cosh ^ {-} | + | $ \cosh ^ {-1} x $, |
− | $ \mathop{\rm tanh} ^ {-} | + | $ \mathop{\rm tanh} ^ {-1} x $; |
other notations are: $ { \mathop{\rm arg} \sinh } x $, | other notations are: $ { \mathop{\rm arg} \sinh } x $, | ||
$ { \mathop{\rm arg} \cosh } x $, | $ { \mathop{\rm arg} \cosh } x $, | ||
Line 22: | Line 22: | ||
$$ | $$ | ||
− | \sinh ^ {-} | + | \sinh ^ {-1} x = \ |
\mathop{\rm ln} ( x + \sqrt {x ^ {2} + 1 } ) ,\ \ | \mathop{\rm ln} ( x + \sqrt {x ^ {2} + 1 } ) ,\ \ | ||
- \infty < x < + \infty , | - \infty < x < + \infty , | ||
Line 28: | Line 28: | ||
$$ | $$ | ||
− | \cosh ^ {-} | + | \cosh ^ {-1} x = \ |
\pm \mathop{\rm ln} ( x + \sqrt {x ^ {2} - 1 } ) ,\ \ | \pm \mathop{\rm ln} ( x + \sqrt {x ^ {2} - 1 } ) ,\ \ | ||
x \geq 1 , | x \geq 1 , | ||
Line 34: | Line 34: | ||
$$ | $$ | ||
− | \mathop{\rm tanh} ^ {-} | + | \mathop{\rm tanh} ^ {-1} x = |
\frac{1}{2} | \frac{1}{2} | ||
\mathop{\rm ln} | \mathop{\rm ln} | ||
Line 42: | Line 42: | ||
$$ | $$ | ||
− | The inverse hyperbolic functions are single-valued and continuous at each point of their domain of definition, except for $ \cosh ^ {-} | + | The inverse hyperbolic functions are single-valued and continuous at each point of their domain of definition, except for $ \cosh ^ {-1} x $, |
− | which is two-valued. In studying the properties of the inverse hyperbolic functions, one of the continuous branches of $ \cosh ^ {-} | + | which is two-valued. In studying the properties of the inverse hyperbolic functions, one of the continuous branches of $ \cosh ^ {-1} x $ |
is chosen, that is, in the formula above only one sign is taken (usually plus). For the graphs of these functions see the figure. | is chosen, that is, in the formula above only one sign is taken (usually plus). For the graphs of these functions see the figure. | ||
Line 53: | Line 53: | ||
$$ | $$ | ||
− | \sinh ^ {-} | + | \sinh ^ {-1} x = \ |
− | \mathop{\rm tanh} ^ {-} | + | \mathop{\rm tanh} ^ {-1} \ |
\frac{x}{\sqrt {x ^ {2} + 1 } } | \frac{x}{\sqrt {x ^ {2} + 1 } } | ||
,\ \ | ,\ \ | ||
− | \mathop{\rm tanh} ^ {-} | + | \mathop{\rm tanh} ^ {-1} x = \ |
− | \sinh ^ {-} | + | \sinh ^ {-1} \ |
\frac{x}{\sqrt {1 - x ^ {2} } } | \frac{x}{\sqrt {1 - x ^ {2} } } | ||
Line 68: | Line 68: | ||
$$ | $$ | ||
− | ( \sinh ^ {-} | + | ( \sinh ^ {-1} x ) ^ \prime = \ |
\frac{1}{\sqrt {x ^ {2} + 1 } } | \frac{1}{\sqrt {x ^ {2} + 1 } } | ||
,\ \ | ,\ \ | ||
− | ( \cosh ^ {-} | + | ( \cosh ^ {-1} x ) ^ \prime = \pm |
\frac{1}{\sqrt {x ^ {2} - 1 } } | \frac{1}{\sqrt {x ^ {2} - 1 } } | ||
Line 79: | Line 79: | ||
$$ | $$ | ||
− | ( \mathop{\rm tanh} ^ {-} | + | ( \mathop{\rm tanh} ^ {-1} x ) ^ \prime = |
\frac{1}{ {1 - x ^ {2} } } | \frac{1}{ {1 - x ^ {2} } } | ||
. | . | ||
Line 92: | Line 92: | ||
$$ | $$ | ||
− | \sinh ^ {-} | + | \sinh ^ {-1} z = - i { \mathop{\rm arc} \sin } i z , |
$$ | $$ | ||
$$ | $$ | ||
− | \cosh ^ {-} | + | \cosh ^ {-1} z = i { \mathop{\rm arc} \cos } z , |
$$ | $$ | ||
$$ | $$ | ||
− | \mathop{\rm tanh} ^ {-} | + | \mathop{\rm tanh} ^ {-1} z = - i { \mathop{\rm arc} \mathop{\rm tan} } i z . |
$$ | $$ | ||
Latest revision as of 19:15, 17 January 2024
Functions inverse to the hyperbolic functions. The inverse hyperbolic functions are the inverse hyperbolic sine, cosine and tangent: $ \sinh ^ {-1} x $,
$ \cosh ^ {-1} x $,
$ \mathop{\rm tanh} ^ {-1} x $;
other notations are: $ { \mathop{\rm arg} \sinh } x $,
$ { \mathop{\rm arg} \cosh } x $,
$ { \mathop{\rm arg} \mathop{\rm tanh} } x $.
The inverse hyperbolic functions of a real variable $ x $ are defined by the formulas
$$ \sinh ^ {-1} x = \ \mathop{\rm ln} ( x + \sqrt {x ^ {2} + 1 } ) ,\ \ - \infty < x < + \infty , $$
$$ \cosh ^ {-1} x = \ \pm \mathop{\rm ln} ( x + \sqrt {x ^ {2} - 1 } ) ,\ \ x \geq 1 , $$
$$ \mathop{\rm tanh} ^ {-1} x = \frac{1}{2} \mathop{\rm ln} \frac{1 + x }{1 - x } ,\ | x | < 1 . $$
The inverse hyperbolic functions are single-valued and continuous at each point of their domain of definition, except for $ \cosh ^ {-1} x $, which is two-valued. In studying the properties of the inverse hyperbolic functions, one of the continuous branches of $ \cosh ^ {-1} x $ is chosen, that is, in the formula above only one sign is taken (usually plus). For the graphs of these functions see the figure.
Figure: i052370a
There a number of relations between the inverse hyperbolic functions. For example,
$$ \sinh ^ {-1} x = \ \mathop{\rm tanh} ^ {-1} \ \frac{x}{\sqrt {x ^ {2} + 1 } } ,\ \ \mathop{\rm tanh} ^ {-1} x = \ \sinh ^ {-1} \ \frac{x}{\sqrt {1 - x ^ {2} } } . $$
The derivatives of the inverse hyperbolic functions are given by the formulas
$$ ( \sinh ^ {-1} x ) ^ \prime = \ \frac{1}{\sqrt {x ^ {2} + 1 } } ,\ \ ( \cosh ^ {-1} x ) ^ \prime = \pm \frac{1}{\sqrt {x ^ {2} - 1 } } , $$
$$ ( \mathop{\rm tanh} ^ {-1} x ) ^ \prime = \frac{1}{ {1 - x ^ {2} } } . $$
The inverse hyperbolic functions of a complex variable $ z $ are defined by the same formulas as those for a real variable $ x $, where $ \mathop{\rm ln} z $ is understood to be the many-valued logarithmic function. The inverse hyperbolic functions of a complex variable are the analytic continuations to the complex plane of the corresponding functions of a real variable.
The inverse hyperbolic functions can be expressed in terms of the inverse trigonometric functions by the formulas
$$ \sinh ^ {-1} z = - i { \mathop{\rm arc} \sin } i z , $$
$$ \cosh ^ {-1} z = i { \mathop{\rm arc} \cos } z , $$
$$ \mathop{\rm tanh} ^ {-1} z = - i { \mathop{\rm arc} \mathop{\rm tan} } i z . $$
Comments
The notations $ { \mathop{\rm arc} \sinh } x $, $ { \mathop{\rm arc} \cosh } x $ and $ { \mathop{\rm arc} \mathop{\rm tanh} } x $ are also quite common.
References
[a1] | M.R. Spiegel, "Complex variables" , Schaum's Outline Series , McGraw-Hill (1974) |
[a2] | M. Abramowitz, I.A. Stegun, "Handbook of mathematical functions" , Dover, reprint (1972) |
Inverse hyperbolic functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inverse_hyperbolic_functions&oldid=47421