Difference between revisions of "Partition function (number theory)"
m (typo) |
m (→References: isbn link) |
||
Line 11: | Line 11: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy; E. M. Wright; ''An Introduction to the Theory of Numbers'' Oxford University Press (2008) ISBN 0-19-921986-5</TD></TR> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy; E. M. Wright; ''An Introduction to the Theory of Numbers'' Oxford University Press (2008) {{ISBN|0-19-921986-5}}</TD></TR> |
− | <TR><TD valign="top">[a2]</TD> <TD valign="top"> Tom M. Apostol; ''Modular functions and Dirichlet Series in Number Theory'' Graduate Texts in Mathematics '''41''' Springer-Verlag (1990) ISBN 0-387-97127-0</TD></TR> | + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> Tom M. Apostol; ''Modular functions and Dirichlet Series in Number Theory'' Graduate Texts in Mathematics '''41''' Springer-Verlag (1990) {{ISBN|0-387-97127-0}}</TD></TR> |
<TR><TD valign="top">[a3]</TD> <TD valign="top"> G.E. Andrews, "The theory of partitions" , Addison-Wesley (1976)</TD></TR> | <TR><TD valign="top">[a3]</TD> <TD valign="top"> G.E. Andrews, "The theory of partitions" , Addison-Wesley (1976)</TD></TR> | ||
</table> | </table> | ||
{{TEX|done}} | {{TEX|done}} |
Latest revision as of 15:33, 11 November 2023
2020 Mathematics Subject Classification: Primary: 11P [MSN][ZBL]
A partition of a positive integer $n$ is a decomposition of $n$ as a sum of positive integers. For example, the partitions of 4 read: $4, 3+1, 2+2, 2+1+1, 1+1+1+1$. The partition function $p(n)$ counts the number of different partitions of $n$, so that $p(4) = 5$. L. Euler gave a non-trivial recurrence relation for $p(n)$ (see [a1]) and Ramanujan discovered the surprising congruences $p(5m+4) \equiv 0 \pmod 5$, $p(7m+5) \equiv 0 \pmod 7$, $p(11m+6) \equiv 0 \pmod{11}$, and others. He also found the asymptotic relation $$ p(n) \sim \frac{e^{K \sqrt{n}}}{4n\sqrt{3}}\ \ \text{as}\ \ n \rightarrow \infty \ , $$ where $K = \pi\sqrt{2/3}$. Later this was completed to an exact series expansion by H. Rademacher (see [a2]).
One can also distinguish other partitions, having particular properties, such as the numbers in the decomposition being distinct (see [a3]). See also Additive number theory; Additive problems.
References
[a1] | G.H. Hardy; E. M. Wright; An Introduction to the Theory of Numbers Oxford University Press (2008) ISBN 0-19-921986-5 |
[a2] | Tom M. Apostol; Modular functions and Dirichlet Series in Number Theory Graduate Texts in Mathematics 41 Springer-Verlag (1990) ISBN 0-387-97127-0 |
[a3] | G.E. Andrews, "The theory of partitions" , Addison-Wesley (1976) |
Partition function (number theory). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Partition_function_(number_theory)&oldid=42293