Difference between revisions of "Dirichlet series"
(link to Dirichlet L-function) |
m (fix header) |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | d0329201.png | ||
+ | $#A+1 = 131 n = 0 | ||
+ | $#C+1 = 131 : ~/encyclopedia/old_files/data/D032/D.0302920 Dirichlet series | ||
+ | |||
+ | ''(Automatically converted into $\TeX$. Above some diagnostics.)'' | ||
+ | --> | ||
+ | {{TEX|done}} | ||
+ | |||
A series of the form | A series of the form | ||
− | + | $$ \tag{1 } | |
+ | \sum _ { n=1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } , | ||
+ | $$ | ||
− | where the | + | where the $ a _ {n} $ |
+ | are complex coefficients, $ \lambda _ {n} $, | ||
+ | $ 0 < | \lambda _ {n} | \uparrow \infty $, | ||
+ | are the exponents of the series, and $ s = \sigma + it $ | ||
+ | is a complex variable. If $ \lambda _ {n} = \mathop{\rm ln} n $, | ||
+ | one obtains the so-called ordinary Dirichlet series | ||
− | + | $$ | |
+ | \sum _ { n=1 } ^ \infty | ||
+ | \frac{a _ {n} }{n ^ {s} } | ||
+ | . | ||
+ | $$ | ||
The series | The series | ||
− | + | $$ | |
+ | \sum _ { n=1 } ^ \infty | ||
+ | \frac{1}{n ^ {s} } | ||
+ | |||
+ | $$ | ||
− | represents the Riemann [[Zeta-function|zeta-function]] for | + | represents the Riemann [[Zeta-function|zeta-function]] for $ \sigma > 1 $. |
+ | The series | ||
− | + | $$ | |
+ | L (s) = \sum _ { n=1 } ^ \infty | ||
+ | \frac{\chi (n) }{n ^ {s} } | ||
+ | , | ||
+ | $$ | ||
− | where | + | where $ \chi (n) $ |
+ | is a function, known as a [[Dirichlet character|Dirichlet character]], were studied by P.G.L. Dirichlet (cf. [[Dirichlet L-function|Dirichlet $ L $-function]]). Series (1) with arbitrary exponents $ \lambda _ {n} $ | ||
+ | are known as general Dirichlet series. | ||
==General Dirichlet series with positive exponents.== | ==General Dirichlet series with positive exponents.== | ||
− | Let, initially, the | + | Let, initially, the $ \lambda _ {n} $ |
+ | be positive numbers. The analogue of the [[Abel theorem|Abel theorem]] for power series is then valid: If the series (1) converges at a point $ s _ {0} = \sigma _ {0} + it _ {0} $, | ||
+ | it will converge in the half-plane $ \sigma > \sigma _ {0} $, | ||
+ | and it will converge uniformly inside an arbitrary angle $ | \mathop{\rm arg} ( s - s _ {0} ) | < \phi _ {0} < \pi / 2 $. | ||
+ | The open domain of convergence of the series is some half-plane $ \sigma > c $. | ||
+ | The number $ c $ | ||
+ | is said to be the abscissa of convergence of the Dirichlet series; the straight line $ \sigma = c $ | ||
+ | is said to be the axis of convergence of the series, and the half-plane $ \sigma > c $ | ||
+ | is said to be the half-plane of convergence of the series. As well as the half-plane of convergence one also considers the half-plane of absolute convergence of the Dirichlet series, $ \sigma > a $: | ||
+ | The open domain in which the series converges absolutely (here $ a $ | ||
+ | is the abscissa of absolute convergence). In general, the abscissas of convergence and of absolute convergence are different. But always: | ||
+ | |||
+ | $$ | ||
+ | 0 \leq a - c \leq d ,\ \textrm{ where } d = \mathop{\overline{\lim}} _ {n\rightarrow \infty } \ | ||
+ | |||
+ | \frac{ \mathop{\rm ln} n }{\lambda _ {n} } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | and there exist Dirichlet series for which $ a-c = d $. | ||
+ | If $ d=0 $, | ||
+ | the abscissa of convergence (abscissa of absolute convergence) is computed by the formula | ||
− | + | $$ | |
+ | a = c = \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} } | ||
+ | , | ||
+ | $$ | ||
− | + | which is the analogue of the Cauchy–Hadamard formula. The case $ d>0 $ | |
+ | is more complicated: If the magnitude | ||
− | + | $$ | |
+ | \beta = \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{1}{\lambda _ {n} } | ||
− | + | \mathop{\rm ln} \left | \sum _ { i=1 } ^ { n } a _ {i} \right | | |
+ | $$ | ||
− | + | is positive, then $ c = \beta $; | |
+ | if $ \beta \leq 0 $ | ||
+ | and the series (1) diverges at the point $ s = 0 $, | ||
+ | then $ c=0 $; | ||
+ | if $ \beta \leq 0 $ | ||
+ | and the series (1) converges at the point $ s = 0 $, | ||
+ | then | ||
− | + | $$ | |
+ | c = \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{1}{\lambda _ {n} } | ||
− | + | \mathop{\rm ln} \left | \sum _ { i=1 } ^ \infty a _ {i} \right | . | |
+ | $$ | ||
− | The sum of the series, | + | The sum of the series, $ F (s) $, |
+ | is an analytic function in the half-plane of convergence. If $ \sigma \rightarrow + \infty $, | ||
+ | the function $ F ( \sigma ) $ | ||
+ | asymptotically behaves as the first term of the series, $ a _ {1} e ^ {- \lambda _ {1} \sigma } $ (if $ a _ {1} \neq 0 $). | ||
+ | If the sum of the series is zero, then all coefficients of the series are zero. The maximal half-plane $ \sigma > h $ | ||
+ | in which $ F (s) $ | ||
+ | is an analytic function is said to be the half-plane of holomorphy of the function $ F (s) $, | ||
+ | the straight line $ \sigma = h $ | ||
+ | is known as the axis of holomorphy and the number $ h $ | ||
+ | is called the abscissa of holomorphy. The inequality $ h\leq c $ | ||
+ | is true, and cases when $ h<c $ | ||
+ | are possible. Let $ q $ | ||
+ | be the greatest lower bound of the numbers $ \beta $ | ||
+ | for which $ F (s) $ | ||
+ | is bounded in modulus in the half-plane $ \sigma > \beta $ ($ q \leq a $). | ||
+ | The formula | ||
− | + | $$ | |
+ | a _ {n} = \lim\limits _ {T \rightarrow \infty } | ||
+ | \frac{1}{2T} | ||
+ | \int\limits _ { p-iT } ^ { p+iT } F (s) e ^ {\lambda _ {n} s } ds,\ n=1, 2 \dots p>q, | ||
+ | $$ | ||
is valid, and entails the inequalities | is valid, and entails the inequalities | ||
− | + | $$ | |
+ | | a _ {n} | \leq | ||
+ | \frac{M ( \sigma ) }{e ^ {- \lambda _ {n} \sigma | ||
+ | } } | ||
+ | ,\ M ( \sigma ) = \sup _ {- \infty < t < \infty } | F ( | ||
+ | \sigma + it ) | , | ||
+ | $$ | ||
which are analogues of the Cauchy inequalities for the coefficients of a power series. | which are analogues of the Cauchy inequalities for the coefficients of a power series. | ||
− | The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane | + | The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane $ \sigma > h $; |
+ | it must, for example, tend to zero if $ \sigma \rightarrow + \infty $. | ||
+ | However, the following holds: Whatever the analytic function $ \phi (s) $ | ||
+ | in the half-plane $ \sigma > h $, | ||
+ | it is possible to find a Dirichlet series (1) such that its sum $ F (s) $ | ||
+ | will differ from $ \phi (s) $ | ||
+ | by an entire function. | ||
If the sequence of exponents has a density | If the sequence of exponents has a density | ||
− | + | $$ | |
+ | \tau = \lim\limits _ {n \rightarrow \infty } \ | ||
+ | |||
+ | \frac{n}{\lambda _ {n} } | ||
+ | < \infty , | ||
+ | $$ | ||
the difference between the abscissa of convergence (the abscissas of convergence and of absolute convergence coincide) and the abscissa of holomorphy does not exceed | the difference between the abscissa of convergence (the abscissas of convergence and of absolute convergence coincide) and the abscissa of holomorphy does not exceed | ||
− | + | $$ | |
+ | \delta = \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{1}{\lambda _ {n} } | ||
+ | |||
+ | \mathop{\rm ln} \left | | ||
+ | \frac{1}{L ^ \prime ( \lambda _ {n} ) } | ||
+ | \right | ,\ \ | ||
+ | L ( \lambda ) = \prod _ {n = 1 } ^ \infty | ||
+ | \left ( 1 - | ||
+ | \frac{\lambda ^ {2} }{\lambda _ {n} ^ {2} } | ||
+ | \right ) , | ||
+ | $$ | ||
+ | |||
+ | and there exist series for which this difference equals $ \delta $. | ||
+ | The value of $ \delta $ | ||
+ | may be arbitrary in $ [ 0 , \infty ] $; | ||
+ | in particular, if $ \lambda _ {n+1} - \lambda _ {n} \geq q > 0 $, | ||
+ | $ n = 1 , 2 \dots $ | ||
+ | then $ \delta = 0 $. | ||
+ | The axis of holomorphy has the following property: On any of its segments of length $ 2 \pi \tau $ | ||
+ | the sum of the series has at least one singular point. | ||
+ | |||
+ | If the Dirichlet series (1) converges in the entire plane, its sum $ F (s) $ | ||
+ | is an entire function. Let | ||
− | + | $$ | |
+ | \overline{\lim\limits}\; _ {n \rightarrow \infty } \ | ||
− | + | \frac{ \mathop{\rm ln} n }{\lambda _ {n} } | |
+ | < \infty ; | ||
+ | $$ | ||
− | + | then the R-order of the entire function $ F (s) $ (Ritt order) is the magnitude | |
− | + | $$ | |
+ | \rho = \overline{\lim\limits}\; _ {\sigma \rightarrow - \infty } \ | ||
− | + | \frac{ { \mathop{\rm ln} \mathop{\rm ln} } M ( \sigma ) }{- \sigma } | |
+ | . | ||
+ | $$ | ||
Its expression in terms of the coefficients of the series is | Its expression in terms of the coefficients of the series is | ||
− | + | $$ | |
+ | - | ||
+ | \frac{1} \rho | ||
+ | = \overline{\lim\limits}\; _ {n \rightarrow \infty } \ | ||
+ | |||
+ | \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} \mathop{\rm ln} \lambda _ {n} } | ||
+ | . | ||
+ | $$ | ||
− | One can also introduce the concept of the R-type of a function | + | One can also introduce the concept of the R-type of a function $ F (s) $. |
If | If | ||
− | + | $$ | |
+ | \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{n}{\lambda _ {n} } | ||
+ | = \ | ||
+ | \tau < \infty | ||
+ | $$ | ||
− | and if the function | + | and if the function $ F (s) $ |
+ | is bounded in modulus in a horizontal strip wider than $ 2 \pi \tau $, | ||
+ | then $ F (s) \equiv 0 $ (the analogue of one of the [[Liouville theorems|Liouville theorems]]). | ||
==Dirichlet series with complex exponents.== | ==Dirichlet series with complex exponents.== | ||
For a Dirichlet series | For a Dirichlet series | ||
− | + | $$ \tag{2 } | |
+ | F (s) = \sum _ {n = 1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } | ||
+ | $$ | ||
+ | |||
+ | with complex exponents $ 0 < | \lambda _ {1} | \leq | \lambda _ {2} | \leq \dots $, | ||
+ | the open domain of absolute convergence is convex. If | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
− | + | \frac{ \mathop{\rm ln} n }{\lambda _ {n} } | |
+ | = 0 , | ||
+ | $$ | ||
− | the open domains of convergence and absolute convergence coincide. The sum | + | the open domains of convergence and absolute convergence coincide. The sum $ F (s) $ |
+ | of the series (2) is an analytic function in the domain of convergence. The domain of holomorphy of $ F (s) $ | ||
+ | is, generally speaking, wider than the domain of convergence of the Dirichlet series (2). If | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } | ||
+ | \frac{n}{\lambda _ {n} } | ||
+ | = 0, | ||
+ | $$ | ||
then the domain of holomorphy is convex. | then the domain of holomorphy is convex. | ||
Line 93: | Line 255: | ||
Let | Let | ||
− | + | $$ | |
+ | \overline{\lim\limits}\; _ {n \rightarrow \infty } | ||
+ | \frac{n}{| \lambda _ {n} | } | ||
− | + | = \tau < \infty ; | |
+ | $$ | ||
− | + | let $ L ( \lambda ) $ | |
+ | be an entire function of exponential type which has simple zeros at the points $ \lambda _ {n} $, | ||
+ | $ n \geq 1 $; | ||
+ | let $ \gamma (t) $ | ||
+ | be the Borel-associated function to $ L ( \lambda ) $ (cf. [[Borel transform|Borel transform]]); let $ \overline{D}\; $ | ||
+ | be the smallest closed convex set containing all the singular points of $ \gamma (t) $, | ||
+ | and let | ||
− | + | $$ | |
+ | \psi _ {n} (t) = | ||
+ | \frac{1}{L ^ \prime ( \lambda _ {n} ) } | ||
− | + | \int\limits _ { 0 } ^ \infty | |
+ | \frac{L ( \lambda ) }{\lambda - \lambda _ {n} } | ||
− | + | e ^ {- \lambda t } d \lambda ,\ n = 1 , 2 , \dots | |
+ | $$ | ||
− | + | Then the functions $ \psi _ {n} (t) $ | |
+ | are regular outside $ \overline{D}\; $, | ||
+ | $ \psi _ {n} ( \infty ) = 0 $, | ||
+ | and they are bi-orthogonal to the system $ \{ e ^ {\lambda _ {n} s } \} $: | ||
− | + | $$ | |
− | + | \frac{1}{2 \pi i } | |
+ | \int\limits _ { C } e ^ {\lambda _ {m} t } \psi _ {n} (t) | ||
+ | d t = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | 0 , & m \neq n , \\ | ||
+ | 1, & m =n , \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | + | where $ C $ | |
+ | is a closed contour encircling $ \overline{D}\; $. | ||
+ | If the functions $ \psi _ {n} (t) $ | ||
+ | are continuous up to the boundary of $ \overline{D}\; $, | ||
+ | the boundary $ \partial \overline{D}\; $ | ||
+ | may be taken as $ C $. | ||
+ | To an arbitrary analytic function $ F (s) $ | ||
+ | in $ D $ (the interior of the domain $ \overline{D}\; $) | ||
+ | which is continuous in $ \overline{D}\; $ | ||
+ | one assigns a series: | ||
− | + | $$ \tag{3 } | |
+ | F (s) \sim \sum _ {n = 1 } ^ \infty | ||
+ | a _ {n} e ^ {\lambda _ {n} s } , | ||
+ | $$ | ||
− | + | $$ | |
+ | a _ {n} = | ||
+ | \frac{1}{2 \pi i } | ||
+ | \int\limits _ {\partial \overline{D}\; } F (t) \psi _ {n} (t) d t ,\ n \geq 1 . | ||
+ | $$ | ||
− | + | For a given bounded convex domain $ \overline{D}\; $ | |
+ | it is possible to construct an entire function $ L ( \lambda ) $ | ||
+ | with simple zeros $ \lambda _ {1} , \lambda _ {2} \dots $ | ||
+ | such that for any function $ F (s) $ | ||
+ | analytic in $ D $ | ||
+ | and continuous in $ \overline{D}\; $ | ||
+ | the series (3) converges uniformly inside $ D $ | ||
+ | to $ F (s) $. | ||
+ | For an analytic function $ \phi (s) $ | ||
+ | in $ D $ (not necessarily continuous in $ \overline{D}\; $) | ||
+ | it is possible to find an entire function of exponential type zero, | ||
− | + | $$ | |
+ | M ( \lambda ) = \sum _ {n = 0 } ^ \infty c _ {n} \lambda ^ {n} , | ||
+ | $$ | ||
− | + | and a function $ F (s) $ | |
− | + | analytic in $ D $ | |
+ | and continuous in $ \overline{D}\; $, | ||
+ | such that | ||
+ | $$ | ||
+ | \phi (s) = M ( D ) F (s) = \sum _ {n=0 } ^ \infty c _ {n} F ^ { (n) } (s) . | ||
+ | $$ | ||
+ | Then | ||
− | == | + | $$ |
+ | \phi (s) = \sum _ {n = 0 } ^ \infty a _ {n} M ( \lambda _ {n} ) | ||
+ | e ^ {\lambda _ {n} s } ,\ s \in D . | ||
+ | $$ | ||
+ | The representation of arbitrary analytic functions by Dirichlet series in a domain $ D $ | ||
+ | was also established in cases when $ D $ | ||
+ | is the entire plane or an infinite convex polygonal domain (bounded by a finite number of rectilinear segments). | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, M. Riesz, "The general theory of Dirichlet series" , Cambridge Univ. Press (1915)</TD></TR></table> | + | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Mandelbrojt, "Dirichlet series, principles and methods" , Reidel (1972)</TD></TR> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> G.H. Hardy, M. Riesz, "The general theory of Dirichlet series" , Cambridge Univ. Press (1915) {{ZBL|45.0387.03}}</TD></TR> | ||
+ | </table> |
Latest revision as of 11:32, 16 April 2023
A series of the form
$$ \tag{1 } \sum _ { n=1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } , $$
where the $ a _ {n} $ are complex coefficients, $ \lambda _ {n} $, $ 0 < | \lambda _ {n} | \uparrow \infty $, are the exponents of the series, and $ s = \sigma + it $ is a complex variable. If $ \lambda _ {n} = \mathop{\rm ln} n $, one obtains the so-called ordinary Dirichlet series
$$ \sum _ { n=1 } ^ \infty \frac{a _ {n} }{n ^ {s} } . $$
The series
$$ \sum _ { n=1 } ^ \infty \frac{1}{n ^ {s} } $$
represents the Riemann zeta-function for $ \sigma > 1 $. The series
$$ L (s) = \sum _ { n=1 } ^ \infty \frac{\chi (n) }{n ^ {s} } , $$
where $ \chi (n) $ is a function, known as a Dirichlet character, were studied by P.G.L. Dirichlet (cf. Dirichlet $ L $-function). Series (1) with arbitrary exponents $ \lambda _ {n} $ are known as general Dirichlet series.
General Dirichlet series with positive exponents.
Let, initially, the $ \lambda _ {n} $ be positive numbers. The analogue of the Abel theorem for power series is then valid: If the series (1) converges at a point $ s _ {0} = \sigma _ {0} + it _ {0} $, it will converge in the half-plane $ \sigma > \sigma _ {0} $, and it will converge uniformly inside an arbitrary angle $ | \mathop{\rm arg} ( s - s _ {0} ) | < \phi _ {0} < \pi / 2 $. The open domain of convergence of the series is some half-plane $ \sigma > c $. The number $ c $ is said to be the abscissa of convergence of the Dirichlet series; the straight line $ \sigma = c $ is said to be the axis of convergence of the series, and the half-plane $ \sigma > c $ is said to be the half-plane of convergence of the series. As well as the half-plane of convergence one also considers the half-plane of absolute convergence of the Dirichlet series, $ \sigma > a $: The open domain in which the series converges absolutely (here $ a $ is the abscissa of absolute convergence). In general, the abscissas of convergence and of absolute convergence are different. But always:
$$ 0 \leq a - c \leq d ,\ \textrm{ where } d = \mathop{\overline{\lim}} _ {n\rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } , $$
and there exist Dirichlet series for which $ a-c = d $. If $ d=0 $, the abscissa of convergence (abscissa of absolute convergence) is computed by the formula
$$ a = c = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} } , $$
which is the analogue of the Cauchy–Hadamard formula. The case $ d>0 $ is more complicated: If the magnitude
$$ \beta = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \sum _ { i=1 } ^ { n } a _ {i} \right | $$
is positive, then $ c = \beta $; if $ \beta \leq 0 $ and the series (1) diverges at the point $ s = 0 $, then $ c=0 $; if $ \beta \leq 0 $ and the series (1) converges at the point $ s = 0 $, then
$$ c = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \sum _ { i=1 } ^ \infty a _ {i} \right | . $$
The sum of the series, $ F (s) $, is an analytic function in the half-plane of convergence. If $ \sigma \rightarrow + \infty $, the function $ F ( \sigma ) $ asymptotically behaves as the first term of the series, $ a _ {1} e ^ {- \lambda _ {1} \sigma } $ (if $ a _ {1} \neq 0 $). If the sum of the series is zero, then all coefficients of the series are zero. The maximal half-plane $ \sigma > h $ in which $ F (s) $ is an analytic function is said to be the half-plane of holomorphy of the function $ F (s) $, the straight line $ \sigma = h $ is known as the axis of holomorphy and the number $ h $ is called the abscissa of holomorphy. The inequality $ h\leq c $ is true, and cases when $ h<c $ are possible. Let $ q $ be the greatest lower bound of the numbers $ \beta $ for which $ F (s) $ is bounded in modulus in the half-plane $ \sigma > \beta $ ($ q \leq a $). The formula
$$ a _ {n} = \lim\limits _ {T \rightarrow \infty } \frac{1}{2T} \int\limits _ { p-iT } ^ { p+iT } F (s) e ^ {\lambda _ {n} s } ds,\ n=1, 2 \dots p>q, $$
is valid, and entails the inequalities
$$ | a _ {n} | \leq \frac{M ( \sigma ) }{e ^ {- \lambda _ {n} \sigma } } ,\ M ( \sigma ) = \sup _ {- \infty < t < \infty } | F ( \sigma + it ) | , $$
which are analogues of the Cauchy inequalities for the coefficients of a power series.
The sum of a Dirichlet series cannot be an arbitrary analytic function in some half-plane $ \sigma > h $; it must, for example, tend to zero if $ \sigma \rightarrow + \infty $. However, the following holds: Whatever the analytic function $ \phi (s) $ in the half-plane $ \sigma > h $, it is possible to find a Dirichlet series (1) such that its sum $ F (s) $ will differ from $ \phi (s) $ by an entire function.
If the sequence of exponents has a density
$$ \tau = \lim\limits _ {n \rightarrow \infty } \ \frac{n}{\lambda _ {n} } < \infty , $$
the difference between the abscissa of convergence (the abscissas of convergence and of absolute convergence coincide) and the abscissa of holomorphy does not exceed
$$ \delta = \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{1}{\lambda _ {n} } \mathop{\rm ln} \left | \frac{1}{L ^ \prime ( \lambda _ {n} ) } \right | ,\ \ L ( \lambda ) = \prod _ {n = 1 } ^ \infty \left ( 1 - \frac{\lambda ^ {2} }{\lambda _ {n} ^ {2} } \right ) , $$
and there exist series for which this difference equals $ \delta $. The value of $ \delta $ may be arbitrary in $ [ 0 , \infty ] $; in particular, if $ \lambda _ {n+1} - \lambda _ {n} \geq q > 0 $, $ n = 1 , 2 \dots $ then $ \delta = 0 $. The axis of holomorphy has the following property: On any of its segments of length $ 2 \pi \tau $ the sum of the series has at least one singular point.
If the Dirichlet series (1) converges in the entire plane, its sum $ F (s) $ is an entire function. Let
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } < \infty ; $$
then the R-order of the entire function $ F (s) $ (Ritt order) is the magnitude
$$ \rho = \overline{\lim\limits}\; _ {\sigma \rightarrow - \infty } \ \frac{ { \mathop{\rm ln} \mathop{\rm ln} } M ( \sigma ) }{- \sigma } . $$
Its expression in terms of the coefficients of the series is
$$ - \frac{1} \rho = \overline{\lim\limits}\; _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} | a _ {n} | }{\lambda _ {n} \mathop{\rm ln} \lambda _ {n} } . $$
One can also introduce the concept of the R-type of a function $ F (s) $.
If
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{n}{\lambda _ {n} } = \ \tau < \infty $$
and if the function $ F (s) $ is bounded in modulus in a horizontal strip wider than $ 2 \pi \tau $, then $ F (s) \equiv 0 $ (the analogue of one of the Liouville theorems).
Dirichlet series with complex exponents.
For a Dirichlet series
$$ \tag{2 } F (s) = \sum _ {n = 1 } ^ \infty a _ {n} e ^ {- \lambda _ {n} s } $$
with complex exponents $ 0 < | \lambda _ {1} | \leq | \lambda _ {2} | \leq \dots $, the open domain of absolute convergence is convex. If
$$ \lim\limits _ {n \rightarrow \infty } \ \frac{ \mathop{\rm ln} n }{\lambda _ {n} } = 0 , $$
the open domains of convergence and absolute convergence coincide. The sum $ F (s) $ of the series (2) is an analytic function in the domain of convergence. The domain of holomorphy of $ F (s) $ is, generally speaking, wider than the domain of convergence of the Dirichlet series (2). If
$$ \lim\limits _ {n \rightarrow \infty } \frac{n}{\lambda _ {n} } = 0, $$
then the domain of holomorphy is convex.
Let
$$ \overline{\lim\limits}\; _ {n \rightarrow \infty } \frac{n}{| \lambda _ {n} | } = \tau < \infty ; $$
let $ L ( \lambda ) $ be an entire function of exponential type which has simple zeros at the points $ \lambda _ {n} $, $ n \geq 1 $; let $ \gamma (t) $ be the Borel-associated function to $ L ( \lambda ) $ (cf. Borel transform); let $ \overline{D}\; $ be the smallest closed convex set containing all the singular points of $ \gamma (t) $, and let
$$ \psi _ {n} (t) = \frac{1}{L ^ \prime ( \lambda _ {n} ) } \int\limits _ { 0 } ^ \infty \frac{L ( \lambda ) }{\lambda - \lambda _ {n} } e ^ {- \lambda t } d \lambda ,\ n = 1 , 2 , \dots $$
Then the functions $ \psi _ {n} (t) $ are regular outside $ \overline{D}\; $, $ \psi _ {n} ( \infty ) = 0 $, and they are bi-orthogonal to the system $ \{ e ^ {\lambda _ {n} s } \} $:
$$ \frac{1}{2 \pi i } \int\limits _ { C } e ^ {\lambda _ {m} t } \psi _ {n} (t) d t = \left \{ \begin{array}{ll} 0 , & m \neq n , \\ 1, & m =n , \\ \end{array} \right .$$
where $ C $ is a closed contour encircling $ \overline{D}\; $. If the functions $ \psi _ {n} (t) $ are continuous up to the boundary of $ \overline{D}\; $, the boundary $ \partial \overline{D}\; $ may be taken as $ C $. To an arbitrary analytic function $ F (s) $ in $ D $ (the interior of the domain $ \overline{D}\; $) which is continuous in $ \overline{D}\; $ one assigns a series:
$$ \tag{3 } F (s) \sim \sum _ {n = 1 } ^ \infty a _ {n} e ^ {\lambda _ {n} s } , $$
$$ a _ {n} = \frac{1}{2 \pi i } \int\limits _ {\partial \overline{D}\; } F (t) \psi _ {n} (t) d t ,\ n \geq 1 . $$
For a given bounded convex domain $ \overline{D}\; $ it is possible to construct an entire function $ L ( \lambda ) $ with simple zeros $ \lambda _ {1} , \lambda _ {2} \dots $ such that for any function $ F (s) $ analytic in $ D $ and continuous in $ \overline{D}\; $ the series (3) converges uniformly inside $ D $ to $ F (s) $. For an analytic function $ \phi (s) $ in $ D $ (not necessarily continuous in $ \overline{D}\; $) it is possible to find an entire function of exponential type zero,
$$ M ( \lambda ) = \sum _ {n = 0 } ^ \infty c _ {n} \lambda ^ {n} , $$
and a function $ F (s) $ analytic in $ D $ and continuous in $ \overline{D}\; $, such that
$$ \phi (s) = M ( D ) F (s) = \sum _ {n=0 } ^ \infty c _ {n} F ^ { (n) } (s) . $$
Then
$$ \phi (s) = \sum _ {n = 0 } ^ \infty a _ {n} M ( \lambda _ {n} ) e ^ {\lambda _ {n} s } ,\ s \in D . $$
The representation of arbitrary analytic functions by Dirichlet series in a domain $ D $ was also established in cases when $ D $ is the entire plane or an infinite convex polygonal domain (bounded by a finite number of rectilinear segments).
References
[1] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
[2] | S. Mandelbrojt, "Dirichlet series, principles and methods" , Reidel (1972) |
[a1] | G.H. Hardy, M. Riesz, "The general theory of Dirichlet series" , Cambridge Univ. Press (1915) Zbl 45.0387.03 |
Dirichlet series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_series&oldid=36168