Difference between revisions of "Unramified ideal"
m (link) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | u0957901.png | ||
+ | $#A+1 = 34 n = 0 | ||
+ | $#C+1 = 34 : ~/encyclopedia/old_files/data/U095/U.0905790 Unramified ideal | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | {{MSC|11S15}} | ||
+ | |||
+ | A [[Prime ideal|prime ideal]] $ \mathfrak P $ | ||
+ | of an algebraic number field $ K $( | ||
+ | cf. also [[Algebraic number|Algebraic number]]; [[Number field|Number field]]) lying over a prime number $ p $ | ||
+ | such that the principal ideal $ ( p) $ | ||
+ | has in $ K $ | ||
+ | a product decomposition into prime ideals of the form | ||
+ | |||
+ | $$ | ||
+ | ( p) = \mathfrak P _ {1} ^ {e _ {1} } \dots \mathfrak P _ {s} ^ {e _ {s} } , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \mathfrak P _ {1} = \mathfrak P \ \textrm{ and } \ \ | ||
+ | \mathfrak P _ {2} \dots \mathfrak P _ {s} \neq \mathfrak P , | ||
+ | $$ | ||
− | and | + | and $ e _ {1} = 1 $. |
+ | More accurately, such an ideal is called absolutely unramified. In general, let $ A $ | ||
+ | be a [[Dedekind ring|Dedekind ring]] with [[field of fractions]] $ k $, | ||
+ | let $ K $ | ||
+ | be a finite extension of $ k $ | ||
+ | and let $ B $ | ||
+ | be the integral closure of $ A $ | ||
+ | in $ K $( | ||
+ | cf. [[Integral extension of a ring|Integral extension of a ring]]). A prime ideal $ \mathfrak P $ | ||
+ | of $ B $ | ||
+ | lying over an ideal $ \mathfrak Y $ | ||
+ | of $ A $ | ||
+ | is unramified in the extension $ K / k $ | ||
+ | if | ||
− | + | $$ | |
+ | \mathfrak Y B = \mathfrak P _ {1} ^ {e _ {1} } \dots \mathfrak P _ {s} ^ {e _ {s} } , | ||
+ | $$ | ||
− | where | + | where $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ |
+ | are pairwise distinct prime ideals of $ B $, | ||
+ | $ \mathfrak P _ {1} = \mathfrak P $ | ||
+ | and $ e _ {1} = 1 $. | ||
+ | If all ideals $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ | ||
+ | are unramified, then one occasionally says that $ \mathfrak Y $ | ||
+ | remains unramified in $ K / k $. | ||
+ | For a Galois extension $ K / k $, | ||
+ | an ideal $ \mathfrak P $ | ||
+ | of $ B $ | ||
+ | is unramified if and only if the decomposition group of $ \mathfrak P $ | ||
+ | in the Galois group $ G ( K / k ) $ | ||
+ | is the same as the Galois group of the extension of the residue class field $ ( B/ \mathfrak P ) / ( A/ \mathfrak Y ) $. | ||
+ | In any finite extension of algebraic number fields all ideals except finitely many are unramified. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR></table> |
Latest revision as of 08:27, 6 June 2020
2020 Mathematics Subject Classification: Primary: 11S15 [MSN][ZBL]
A prime ideal $ \mathfrak P $ of an algebraic number field $ K $( cf. also Algebraic number; Number field) lying over a prime number $ p $ such that the principal ideal $ ( p) $ has in $ K $ a product decomposition into prime ideals of the form
$$ ( p) = \mathfrak P _ {1} ^ {e _ {1} } \dots \mathfrak P _ {s} ^ {e _ {s} } , $$
where
$$ \mathfrak P _ {1} = \mathfrak P \ \textrm{ and } \ \ \mathfrak P _ {2} \dots \mathfrak P _ {s} \neq \mathfrak P , $$
and $ e _ {1} = 1 $. More accurately, such an ideal is called absolutely unramified. In general, let $ A $ be a Dedekind ring with field of fractions $ k $, let $ K $ be a finite extension of $ k $ and let $ B $ be the integral closure of $ A $ in $ K $( cf. Integral extension of a ring). A prime ideal $ \mathfrak P $ of $ B $ lying over an ideal $ \mathfrak Y $ of $ A $ is unramified in the extension $ K / k $ if
$$ \mathfrak Y B = \mathfrak P _ {1} ^ {e _ {1} } \dots \mathfrak P _ {s} ^ {e _ {s} } , $$
where $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ are pairwise distinct prime ideals of $ B $, $ \mathfrak P _ {1} = \mathfrak P $ and $ e _ {1} = 1 $. If all ideals $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ are unramified, then one occasionally says that $ \mathfrak Y $ remains unramified in $ K / k $. For a Galois extension $ K / k $, an ideal $ \mathfrak P $ of $ B $ is unramified if and only if the decomposition group of $ \mathfrak P $ in the Galois group $ G ( K / k ) $ is the same as the Galois group of the extension of the residue class field $ ( B/ \mathfrak P ) / ( A/ \mathfrak Y ) $. In any finite extension of algebraic number fields all ideals except finitely many are unramified.
References
[1] | Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1966) (Translated from Russian) (German translation: Birkhäuser, 1966) |
[2] | S. Lang, "Algebraic number theory" , Addison-Wesley (1970) |
[3] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
Unramified ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unramified_ideal&oldid=35063