Namespaces
Variants
Actions

Difference between revisions of "Confocal conics"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Geometry)
(OldImage template added)
 
(One intermediate revision by one other user not shown)
Line 6: Line 6:
 
Every ellipse is orthogonal to every hyperbola confocal with it, that is, they intersect (in four points) at right angles. In a suitable coordinate system, all the confocal ellipses and hyperbolas can be given by the equation
 
Every ellipse is orthogonal to every hyperbola confocal with it, that is, they intersect (in four points) at right angles. In a suitable coordinate system, all the confocal ellipses and hyperbolas can be given by the equation
  
$$\frac{x^2}{\lambda}+\frac{y^2}{\lambda-c^2}=1,\tag{*}$$
+
$$\frac{x^2}{\lambda}+\frac{y^2}{\lambda-c^2}=1,\label{*}\tag{*}$$
  
 
where $c$ is the distance of the foci from the coordinate origin and $\lambda$ is a variable parameter. If $\lambda>c^2$, this equation defines an ellipse, and if $0<\lambda<c^2$, it defines a hyperbola (if $\lambda<0$, it is an imaginary curve of the second order). If one of the foci tends to infinity, then in the limit one obtains two families of confocal parabolas (Fig. b).
 
where $c$ is the distance of the foci from the coordinate origin and $\lambda$ is a variable parameter. If $\lambda>c^2$, this equation defines an ellipse, and if $0<\lambda<c^2$, it defines a hyperbola (if $\lambda<0$, it is an imaginary curve of the second order). If one of the foci tends to infinity, then in the limit one obtains two families of confocal parabolas (Fig. b).
Line 18: Line 18:
 
Figure: c024710b
 
Figure: c024710b
  
Any two parabolas from different families are also orthogonal to one another. Confocal ellipses and hyperbolas can be used to introduce the system of [[elliptic coordinates]] in the plane as follows. If $M(x,y)$ is any point of the plane, then by substituting its coordinates $x$ and $y$ into \ref{*}, one obtains a quadratic equation for $\lambda$; its roots $\lambda_1,\lambda_2$ are the elliptic coordinates of $M$. The confocal ellipses and hyperbolas themselves form the coordinate net of this coordinate system, that is, they are defined by the equations $\lambda_1=\text{const}$ and $\lambda_2=\text{const}$.
+
Any two parabolas from different families are also orthogonal to one another. Confocal ellipses and hyperbolas can be used to introduce the system of [[elliptic coordinates]] in the plane as follows. If $M(x,y)$ is any point of the plane, then by substituting its coordinates $x$ and $y$ into \eqref{*}, one obtains a quadratic equation for $\lambda$; its roots $\lambda_1,\lambda_2$ are the elliptic coordinates of $M$. The confocal ellipses and hyperbolas themselves form the coordinate net of this coordinate system, that is, they are defined by the equations $\lambda_1=\text{const}$ and $\lambda_2=\text{const}$.
  
  
 
====Comments====
 
  
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J. Struik,  "Lectures on analytic and projective geometry" , Addison-Wesley  (1953)  pp. 157–160</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  D.J. Struik,  "Lectures on analytic and projective geometry" , Addison-Wesley  (1953)  pp. 157–160</TD></TR></table>
 +
{{OldImage}}
  
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Latest revision as of 09:58, 26 March 2023

co-focal curves

Curves of the second order with common foci. If $F$ and $F_1$ are two given points in the plane, then through every point of the plane there are one ellipse and one hyperbola that have $F$ and $F_1$ as their foci (Fig. a).

Every ellipse is orthogonal to every hyperbola confocal with it, that is, they intersect (in four points) at right angles. In a suitable coordinate system, all the confocal ellipses and hyperbolas can be given by the equation

$$\frac{x^2}{\lambda}+\frac{y^2}{\lambda-c^2}=1,\label{*}\tag{*}$$

where $c$ is the distance of the foci from the coordinate origin and $\lambda$ is a variable parameter. If $\lambda>c^2$, this equation defines an ellipse, and if $0<\lambda<c^2$, it defines a hyperbola (if $\lambda<0$, it is an imaginary curve of the second order). If one of the foci tends to infinity, then in the limit one obtains two families of confocal parabolas (Fig. b).

Figure: c024710a

Figure: c024710b

Any two parabolas from different families are also orthogonal to one another. Confocal ellipses and hyperbolas can be used to introduce the system of elliptic coordinates in the plane as follows. If $M(x,y)$ is any point of the plane, then by substituting its coordinates $x$ and $y$ into \eqref{*}, one obtains a quadratic equation for $\lambda$; its roots $\lambda_1,\lambda_2$ are the elliptic coordinates of $M$. The confocal ellipses and hyperbolas themselves form the coordinate net of this coordinate system, that is, they are defined by the equations $\lambda_1=\text{const}$ and $\lambda_2=\text{const}$.



References

[a1] D.J. Struik, "Lectures on analytic and projective geometry" , Addison-Wesley (1953) pp. 157–160


🛠️ This page contains images that should be replaced by better images in the SVG file format. 🛠️
How to Cite This Entry:
Confocal conics. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Confocal_conics&oldid=34041
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article