Namespaces
Variants
Actions

Difference between revisions of "Wild knot"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(asy code to subpage)
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
 
A knot $L$ in the Euclidean space $E^3$ (cf. [[Knot theory|Knot theory]]) such that there is no homeomorphism of $E^3$ onto itself under which $L$ would become a closed polygonal line consisting of a finite number of segments.
 
A knot $L$ in the Euclidean space $E^3$ (cf. [[Knot theory|Knot theory]]) such that there is no homeomorphism of $E^3$ onto itself under which $L$ would become a closed polygonal line consisting of a finite number of segments.
  
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/w097980a.gif" />
+
{{:Wild knot/Fig1}}
 
 
Figure: w097980a
 
  
 
Thus, knots containing the so-called Fox–Artin arcs — certain simple arcs obtained by a [[Wild imbedding|wild imbedding]] in $E^3$ — are wild. For example, the fundamental group $\pi_1(E^3\setminus L)$ is non-trivial for the arc $L_1$ (Fig. a); this group is trivial for the arc $L_2$ (Fig. b), but $E^3\setminus L_2$ itself is not homeomorphic to the complement of a point in $E^3$.
 
Thus, knots containing the so-called Fox–Artin arcs — certain simple arcs obtained by a [[Wild imbedding|wild imbedding]] in $E^3$ — are wild. For example, the fundamental group $\pi_1(E^3\setminus L)$ is non-trivial for the arc $L_1$ (Fig. a); this group is trivial for the arc $L_2$ (Fig. b), but $E^3\setminus L_2$ itself is not homeomorphic to the complement of a point in $E^3$.

Latest revision as of 12:00, 13 December 2014

A knot $L$ in the Euclidean space $E^3$ (cf. Knot theory) such that there is no homeomorphism of $E^3$ onto itself under which $L$ would become a closed polygonal line consisting of a finite number of segments.

Thus, knots containing the so-called Fox–Artin arcs — certain simple arcs obtained by a wild imbedding in $E^3$ — are wild. For example, the fundamental group $\pi_1(E^3\setminus L)$ is non-trivial for the arc $L_1$ (Fig. a); this group is trivial for the arc $L_2$ (Fig. b), but $E^3\setminus L_2$ itself is not homeomorphic to the complement of a point in $E^3$.

Figure: w097980b

For references see Wild sphere.

How to Cite This Entry:
Wild knot. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wild_knot&oldid=31603
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article