Difference between revisions of "Multiplicative arithmetic function"
Ulf Rehmann (talk | contribs) m (msc, mr, zbl, label, \zeta-->\Epsilon) |
m (typo) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | {{ | + | {{TEX|done}}{{MSC|11A25}} |
− | {{ | ||
− | An [[ | + | \def\Epsilon{\mathrm{E}} |
− | + | An [[arithmetic function]] of one argument, f(m), satisfying the condition | |
− | + | \begin{equation} | |
f(mn) = f(m) f(n) \label{mult} | f(mn) = f(m) f(n) \label{mult} | ||
− | $$ | + | \end{equation} |
+ | for any pair of [[coprime numbers|coprime integers]] $m,n$. It is usually assumed that f is not identically zero (which is equivalent to the condition f(1)=1). A multiplicative arithmetic function is called '''strongly multiplicative''' if f(p^a) = f(p) for all prime numbers p and all natural numbers a. If \eqref{mult} holds for any two numbers m,n, and not just for coprime numbers, then f is called '''totally multiplicative'''; in this case f(p^a) = f(p)^a. | ||
− | + | Examples of multiplicative arithmetic functions. The function \tau(m), the [[number of divisors]] of a natural number m; the function \sigma(m), the [[sum of divisors]] of a natural number m; the [[Euler function]] \phi(m); and the [[Möbius function]] \mu(m). The function \phi(m)/m is a strongly multiplicative arithmetic function, a power function $m^k$ is a totally multiplicative arithmetic function. | |
− | |||
− | Examples of multiplicative arithmetic functions. The function \tau(m), the number of | ||
Line 21: | Line 19: | ||
$$ | $$ | ||
− | yields a [[ | + | yields a commutative [[group]] structure on the multiplicative functions. The unit element is given by the function e, where e(1)=1 and e(m) = 0 for all m > 1. Another standard multiplicative function is the constant function \Epsilon(n) with \Epsilon(m) = 1 for all m and its inverse \mu, the [[Möbius function]]. Note that \phi = \mu * N_1, where N_1(n) = n for all n, and that \tau = \Epsilon * \Epsilon, $\sigma = \Epsilon * N_1. In this context, the [[Möbius inversion]] formula states that if g = \Epsilon * f then f = \mu * g$. |
− | Formally, the [[ | + | Formally, the [[Dirichlet series]] of a multiplicative function f has an [[Euler product]]: |
$$ | $$ | ||
Line 29: | Line 27: | ||
$$ | $$ | ||
− | whose form simplifies considerably if f is strongly or totally multiplicative. | + | whose form simplifies considerably if f is strongly or totally multiplicative: if f is strongly multiplicative then |
+ | $$ | ||
+ | \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 + f(p) p^{-s} (1 - p^{-s})^{-1}} \right) \ , | ||
+ | $$ | ||
+ | and if f is totally multiplicative then | ||
+ | $$ | ||
+ | \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 - f(p) p^{-s}}\right)^{-1} \ , | ||
+ | $$ | ||
+ | |||
+ | |||
+ | Dirichlet convolution of functions corresponds to multiplication of the associated Dirichlet series. | ||
====References==== | ====References==== |
Latest revision as of 20:15, 19 November 2017
2020 Mathematics Subject Classification: Primary: 11A25 [MSN][ZBL]
\def\Epsilon{\mathrm{E}} An arithmetic function of one argument, f(m), satisfying the condition \begin{equation} f(mn) = f(m) f(n) \label{mult} \end{equation} for any pair of coprime integers m,n. It is usually assumed that f is not identically zero (which is equivalent to the condition f(1)=1). A multiplicative arithmetic function is called strongly multiplicative if f(p^a) = f(p) for all prime numbers p and all natural numbers a. If \eqref{mult} holds for any two numbers m,n, and not just for coprime numbers, then f is called totally multiplicative; in this case f(p^a) = f(p)^a.
Examples of multiplicative arithmetic functions. The function \tau(m), the number of divisors of a natural number m; the function \sigma(m), the sum of divisors of a natural number m; the Euler function \phi(m); and the Möbius function \mu(m). The function \phi(m)/m is a strongly multiplicative arithmetic function, a power function m^k is a totally multiplicative arithmetic function.
Comments
The Dirichlet convolution product
(f*g)(n) = \sum_{d\vert n} f(d) g(n/d)\
yields a commutative group structure on the multiplicative functions. The unit element is given by the function e, where e(1)=1 and e(m) = 0 for all m > 1. Another standard multiplicative function is the constant function \Epsilon(n) with \Epsilon(m) = 1 for all m and its inverse \mu, the Möbius function. Note that \phi = \mu * N_1, where N_1(n) = n for all n, and that \tau = \Epsilon * \Epsilon, \sigma = \Epsilon * N_1. In this context, the Möbius inversion formula states that if g = \Epsilon * f then f = \mu * g.
Formally, the Dirichlet series of a multiplicative function f has an Euler product:
\sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 + f(p) p^{-s} + f(p^2) p^{-2s} + \cdots }\right) \ ,
whose form simplifies considerably if f is strongly or totally multiplicative: if f is strongly multiplicative then \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 + f(p) p^{-s} (1 - p^{-s})^{-1}} \right) \ , and if f is totally multiplicative then \sum_{n=1}^\infty f(n) n^{-s} = \prod_p \left({1 - f(p) p^{-s}}\right)^{-1} \ ,
Dirichlet convolution of functions corresponds to multiplication of the associated Dirichlet series.
References
[HaWr] | G.H. Hardy, E.M. Wright, "An introduction to the theory of numbers", Clarendon Press (1960) pp. Chapts. XVI-XVII MR2445243 MR1561815 Zbl 0086.25803 |
Multiplicative arithmetic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiplicative_arithmetic_function&oldid=30526