Difference between revisions of "Blow-up algebra"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | b1106401.png | ||
+ | $#A+1 = 100 n = 0 | ||
+ | $#C+1 = 100 : ~/encyclopedia/old_files/data/B110/B.1100640 Blow\AAhup algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
==Geometric description.== | ==Geometric description.== | ||
− | Associate to the punctured affine | + | Associate to the punctured affine $ n $- |
+ | space $ X _ {0} = \mathbf A ^ {n} \setminus \{ 0 \} $ | ||
+ | over $ \mathbf R $ | ||
+ | or $ \mathbf C $, | ||
+ | the submanifold $ {\widetilde{X} } _ {0} $ | ||
+ | of $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } $ | ||
+ | of points $ ( x, [ x ] ) $, | ||
+ | where $ x $ | ||
+ | varies in $ X _ {0} $ | ||
+ | and $ [ x ] $ | ||
+ | denotes the equivalence class of $ x $ | ||
+ | in the projective $ ( n - 1 ) $- | ||
+ | dimensional space. The closure $ {\widetilde{X} } $ | ||
+ | of $ {\widetilde{X} } _ {0} $ | ||
+ | is smooth and is called the blow-up of $ X = \mathbf A ^ {n} $ | ||
+ | with centre the origin. In the real case and for $ n = 2 $ | ||
+ | it is equal to the [[Möbius strip|Möbius strip]]. The mapping $ \pi : { {\widetilde{X} } } \rightarrow X $ | ||
+ | induced by the projection $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } \rightarrow \mathbf A ^ {n} $ | ||
+ | is an isomorphism over $ X _ {0} $; | ||
+ | its fibre over $ 0 $ | ||
+ | is $ \mathbf P ^ {n - 1 } $, | ||
+ | the exceptional divisor of $ \pi $. | ||
− | The strict transform | + | The strict transform $ Y ^ \prime $ |
+ | of a subvariety $ Y $ | ||
+ | of $ X $ | ||
+ | is the closure of the inverse image $ \pi ^ {-1 } ( Y \setminus \{ 0 \} ) $ | ||
+ | in $ {\widetilde{X} } $. | ||
+ | For instance, if $ Y $ | ||
+ | is the cuspidal curve $ x ^ {3} = y ^ {2} $ | ||
+ | in $ \mathbf A ^ {2} $ | ||
+ | parametrized by $ ( t ^ {2} ,t ^ {3} ) $, | ||
+ | then $ Y ^ \prime $ | ||
+ | is given by $ ( t ^ {2} ,t ^ {3} ,t ) $ | ||
+ | and hence is smooth. This forms the simplest example of [[Resolution of singularities|resolution of singularities]] by a blow-up. | ||
− | Higher-dimensional smooth centres | + | Higher-dimensional smooth centres $ C $ |
+ | in $ \mathbf A ^ {n} $ | ||
+ | are blown up by decomposing $ \mathbf A ^ {n} $ | ||
+ | locally along $ C $ | ||
+ | into a Cartesian product $ X _ {1} \times X _ {2} $ | ||
+ | of submanifolds, where $ X _ {1} $ | ||
+ | is transversal to $ C $ | ||
+ | with $ X _ {1} \cap C = \{ p \} $ | ||
+ | a point. Then $ {\widetilde{X} } $ | ||
+ | is given locally as $ { {X _ {1} } tilde } \times X _ {2} $, | ||
+ | where $ { {X _ {1} } tilde } $ | ||
+ | denotes the blow-up of $ X _ {1} $ | ||
+ | in $ p $. | ||
==Algebraic description.== | ==Algebraic description.== | ||
− | See also [[#References|[a1]]]. Let | + | See also [[#References|[a1]]]. Let $ A $ |
+ | be a [[Noetherian ring|Noetherian ring]] and let $ I $ | ||
+ | be an [[Ideal|ideal]] of $ A $. | ||
+ | Define the blow-up algebra (or Rees algebra) of $ I $ | ||
+ | as the graded ring $ S = \oplus _ {k \geq 0 } I ^ {k} $( | ||
+ | where $ I ^ {k} $ | ||
+ | denotes the $ k $ | ||
+ | th power of $ I $, | ||
+ | $ I ^ {0} = A $). | ||
+ | Then $ Bl _ {I} ( A ) = { \mathop{\rm Proj} } S $ | ||
+ | is the blow-up of $ { \mathop{\rm Spec} } A $ | ||
+ | with centre $ I $ | ||
+ | and coincides with the above construction when $ A $ | ||
+ | is the polynomial ring in $ n $ | ||
+ | variables over $ \mathbf R $ | ||
+ | or $ \mathbf C $. | ||
+ | Here, $ { \mathop{\rm Proj} } S $ | ||
+ | denotes the [[Algebraic variety|algebraic variety]] or [[Scheme|scheme]] given by all homogeneous prime ideals of $ S $ | ||
+ | not containing the ideal $ S _ {+} = \oplus _ {k > 0 } I ^ {k} $, | ||
+ | and $ { \mathop{\rm Spec} } A $ | ||
+ | is the [[Affine variety|affine variety]] or scheme of all prime ideals of $ A $. | ||
==Local description.== | ==Local description.== | ||
− | Any generator system | + | Any generator system $ x _ {1} \dots x _ {k} $ |
+ | of $ I $ | ||
+ | gives rise to a covering | ||
− | + | $$ | |
+ | Bl _ {I} ( A ) = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ {I / {x _ {j} } } ] = | ||
+ | $$ | ||
− | + | $$ | |
+ | = | ||
+ | \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ { {x _ {i} } / {x _ {j} } } , 1 \leq i \leq k ] | ||
+ | $$ | ||
− | by | + | by $ k $ |
+ | affine charts, the quotients $ { {x _ {i} } / {x _ {j} } } $ | ||
+ | being considered as elements of the localization of $ A $ | ||
+ | at $ x _ {j} $( | ||
+ | cf. [[Localization in a commutative algebra|Localization in a commutative algebra]]). In the $ j $ | ||
+ | th chart $ {\widetilde{X} } _ {j} $, | ||
+ | the morphism $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ | ||
+ | is induced by the inclusion $ A \subset A [ {I / {x _ {j} } } ] $. | ||
+ | For $ J $ | ||
+ | an ideal of $ A $ | ||
+ | contained in $ I $, | ||
+ | the strict transform of $ J $ | ||
+ | is $ J ^ \prime = \cup _ {n \geq 0 } x _ {j} ^ {- n } ( J \cap I ^ {n} ) {\widetilde{A} } _ {j} $. | ||
+ | The exceptional divisor has the equation $ x _ {j} = 0 $. | ||
+ | If the centre $ C $ | ||
+ | given by the ideal $ I $ | ||
+ | of $ A $ | ||
+ | is smooth, $ I $ | ||
+ | is generated by part of a regular parameter system of $ A $ | ||
+ | and $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ | ||
+ | is given by $ x _ {i} \rightarrow x _ {i} x _ {j} $ | ||
+ | for $ i \leq k $, | ||
+ | $ i \neq j $, | ||
+ | and by $ x _ {i} \rightarrow x _ {i} $ | ||
+ | for $ i > k $ | ||
+ | or $ i = j $. | ||
==Properties.== | ==Properties.== | ||
− | Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with [[Base change|base change]]; the strict transform of a variety equals its blow-up in the given centre. The morphism | + | Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with [[Base change|base change]]; the strict transform of a variety equals its blow-up in the given centre. The morphism $ \pi $ |
+ | is birational, proper and surjective (cf. [[Birational morphism|Birational morphism]]; [[Proper morphism|Proper morphism]]; [[Surjection|Surjection]]). Any birational projective morphism of quasi-projective varieties (cf. [[Quasi-projective scheme|Quasi-projective scheme]]) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic $ 0 $ | ||
+ | can be resolved by a finite sequence of blow-ups of smooth centres [[#References|[a2]]]. In positive characteristic, this has only been proven for dimension $ \leq 3 $[[#References|[a3]]]. See [[#References|[a4]]] for a survey on resolution of singularities, and [[#References|[a5]]] for an account on the role of blow-up algebras in commutative algebra. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" ''Ann. of Math.'' , '''79''' (1964) pp. 109–326 {{MR|0199184}} {{ZBL|0122.38603}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) {{MR|0217069}} {{ZBL|0147.20504}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Lipman, "Introduction to resolution of singularities" , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1975) pp. 187–230 {{MR|0389901}} {{ZBL|0306.14007}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Vasconcelos, "Arithmetic of blowup algebras" , ''Lecture Notes Ser.'' , '''195''' , London Math. Soc. (1994) {{MR|1275840}} {{ZBL|0813.13008}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" ''Ann. of Math.'' , '''79''' (1964) pp. 109–326 {{MR|0199184}} {{ZBL|0122.38603}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) {{MR|0217069}} {{ZBL|0147.20504}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Lipman, "Introduction to resolution of singularities" , ''Proc. Symp. Pure Math.'' , '''29''' , Amer. Math. Soc. (1975) pp. 187–230 {{MR|0389901}} {{ZBL|0306.14007}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> W. Vasconcelos, "Arithmetic of blowup algebras" , ''Lecture Notes Ser.'' , '''195''' , London Math. Soc. (1994) {{MR|1275840}} {{ZBL|0813.13008}} </TD></TR></table> |
Latest revision as of 10:59, 29 May 2020
Geometric description.
Associate to the punctured affine $ n $- space $ X _ {0} = \mathbf A ^ {n} \setminus \{ 0 \} $ over $ \mathbf R $ or $ \mathbf C $, the submanifold $ {\widetilde{X} } _ {0} $ of $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } $ of points $ ( x, [ x ] ) $, where $ x $ varies in $ X _ {0} $ and $ [ x ] $ denotes the equivalence class of $ x $ in the projective $ ( n - 1 ) $- dimensional space. The closure $ {\widetilde{X} } $ of $ {\widetilde{X} } _ {0} $ is smooth and is called the blow-up of $ X = \mathbf A ^ {n} $ with centre the origin. In the real case and for $ n = 2 $ it is equal to the Möbius strip. The mapping $ \pi : { {\widetilde{X} } } \rightarrow X $ induced by the projection $ \mathbf A ^ {n} \times \mathbf P ^ {n - 1 } \rightarrow \mathbf A ^ {n} $ is an isomorphism over $ X _ {0} $; its fibre over $ 0 $ is $ \mathbf P ^ {n - 1 } $, the exceptional divisor of $ \pi $.
The strict transform $ Y ^ \prime $ of a subvariety $ Y $ of $ X $ is the closure of the inverse image $ \pi ^ {-1 } ( Y \setminus \{ 0 \} ) $ in $ {\widetilde{X} } $. For instance, if $ Y $ is the cuspidal curve $ x ^ {3} = y ^ {2} $ in $ \mathbf A ^ {2} $ parametrized by $ ( t ^ {2} ,t ^ {3} ) $, then $ Y ^ \prime $ is given by $ ( t ^ {2} ,t ^ {3} ,t ) $ and hence is smooth. This forms the simplest example of resolution of singularities by a blow-up.
Higher-dimensional smooth centres $ C $ in $ \mathbf A ^ {n} $ are blown up by decomposing $ \mathbf A ^ {n} $ locally along $ C $ into a Cartesian product $ X _ {1} \times X _ {2} $ of submanifolds, where $ X _ {1} $ is transversal to $ C $ with $ X _ {1} \cap C = \{ p \} $ a point. Then $ {\widetilde{X} } $ is given locally as $ { {X _ {1} } tilde } \times X _ {2} $, where $ { {X _ {1} } tilde } $ denotes the blow-up of $ X _ {1} $ in $ p $.
Algebraic description.
See also [a1]. Let $ A $ be a Noetherian ring and let $ I $ be an ideal of $ A $. Define the blow-up algebra (or Rees algebra) of $ I $ as the graded ring $ S = \oplus _ {k \geq 0 } I ^ {k} $( where $ I ^ {k} $ denotes the $ k $ th power of $ I $, $ I ^ {0} = A $). Then $ Bl _ {I} ( A ) = { \mathop{\rm Proj} } S $ is the blow-up of $ { \mathop{\rm Spec} } A $ with centre $ I $ and coincides with the above construction when $ A $ is the polynomial ring in $ n $ variables over $ \mathbf R $ or $ \mathbf C $. Here, $ { \mathop{\rm Proj} } S $ denotes the algebraic variety or scheme given by all homogeneous prime ideals of $ S $ not containing the ideal $ S _ {+} = \oplus _ {k > 0 } I ^ {k} $, and $ { \mathop{\rm Spec} } A $ is the affine variety or scheme of all prime ideals of $ A $.
Local description.
Any generator system $ x _ {1} \dots x _ {k} $ of $ I $ gives rise to a covering
$$ Bl _ {I} ( A ) = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ {I / {x _ {j} } } ] = $$
$$ = \cup _ {j = 1 } ^ { k } { \mathop{\rm Spec} } A [ { {x _ {i} } / {x _ {j} } } , 1 \leq i \leq k ] $$
by $ k $ affine charts, the quotients $ { {x _ {i} } / {x _ {j} } } $ being considered as elements of the localization of $ A $ at $ x _ {j} $( cf. Localization in a commutative algebra). In the $ j $ th chart $ {\widetilde{X} } _ {j} $, the morphism $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ is induced by the inclusion $ A \subset A [ {I / {x _ {j} } } ] $. For $ J $ an ideal of $ A $ contained in $ I $, the strict transform of $ J $ is $ J ^ \prime = \cup _ {n \geq 0 } x _ {j} ^ {- n } ( J \cap I ^ {n} ) {\widetilde{A} } _ {j} $. The exceptional divisor has the equation $ x _ {j} = 0 $. If the centre $ C $ given by the ideal $ I $ of $ A $ is smooth, $ I $ is generated by part of a regular parameter system of $ A $ and $ \pi : { {\widetilde{X} } _ {j} } \rightarrow X $ is given by $ x _ {i} \rightarrow x _ {i} x _ {j} $ for $ i \leq k $, $ i \neq j $, and by $ x _ {i} \rightarrow x _ {i} $ for $ i > k $ or $ i = j $.
Properties.
Different centres may induce the same blow-up. A composite of blow-ups is again a blow-up. Blowing up commutes with base change; the strict transform of a variety equals its blow-up in the given centre. The morphism $ \pi $ is birational, proper and surjective (cf. Birational morphism; Proper morphism; Surjection). Any birational projective morphism of quasi-projective varieties (cf. Quasi-projective scheme) is the blowing up of a suitable centre. The singularities of varieties over a field of characteristic $ 0 $ can be resolved by a finite sequence of blow-ups of smooth centres [a2]. In positive characteristic, this has only been proven for dimension $ \leq 3 $[a3]. See [a4] for a survey on resolution of singularities, and [a5] for an account on the role of blow-up algebras in commutative algebra.
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
[a2] | H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero" Ann. of Math. , 79 (1964) pp. 109–326 MR0199184 Zbl 0122.38603 |
[a3] | S. Abhyankar, "Resolution of singularities of embedded algebraic surfaces" , Acad. Press (1966) MR0217069 Zbl 0147.20504 |
[a4] | J. Lipman, "Introduction to resolution of singularities" , Proc. Symp. Pure Math. , 29 , Amer. Math. Soc. (1975) pp. 187–230 MR0389901 Zbl 0306.14007 |
[a5] | W. Vasconcelos, "Arithmetic of blowup algebras" , Lecture Notes Ser. , 195 , London Math. Soc. (1994) MR1275840 Zbl 0813.13008 |
Blow-up algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Blow-up_algebra&oldid=23768