|
|
(6 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558401.png" /> be a complex linear space on a which a Hermitian sesquilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558402.png" /> is defined (i.e. a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558403.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558404.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558405.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558406.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558407.png" />). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558408.png" /> (or, more exactly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k0558409.png" />) is called a Krein space if in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584010.png" /> there are two linear manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584011.png" /> such that
| + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, |
| + | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist |
| + | was used. |
| + | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584012.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | Out of 3 formulas, 3 were replaced by TEX code.--> |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584014.png" /> are Hilbert spaces (cf. [[Hilbert space|Hilbert space]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584015.png" />. It is always assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584016.png" /> (otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584017.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584018.png" /> is a Hilbert space); <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584019.png" /> is called the indefinite inner product of the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584020.png" />. If, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584021.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584022.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584024.png" />-space or Pontryagin space of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584026.png" /> (cf. also [[Pontryagin space|Pontryagin space]]); in the sequel, for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584027.png" />-space it is always assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584028.png" />.
| + | {{TEX|semi-auto}}{{TEX|done}} |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Using the decomposition (a1), on the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584029.png" /> a Hilbert inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584030.png" /> can be defined as follows:
| + | Let $ {\mathcal K} $ |
| + | be a complex linear space on which a Hermitian sesquilinear form $ [ \cdot , \cdot ] $ |
| + | is defined (i.e. a mapping $ [ \cdot , \cdot ] : {\mathcal K} \times {\mathcal K} \rightarrow \mathbf C $ |
| + | such that $ [ \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} , y ] = \alpha _ {1} [ x _ {1} , y ] + \alpha _ {2} [ x _ {2} , y ] $ |
| + | and $ [ x , y ] = \overline{ {[ y , x ] }}\; $ |
| + | for all $ x _ {1} , x _ {2} , x , y \in {\mathcal K} $, |
| + | $ \alpha _ {1} , \alpha _ {2} \in \mathbf C $). |
| + | Then $ {\mathcal K} $( |
| + | or, more exactly, $ ( {\mathcal K} , [ \cdot , \cdot ] ) $) |
| + | is called a Krein space if in $ {\mathcal K} $ |
| + | there are two linear manifolds $ {\mathcal K} _ \pm $ |
| + | such that |
| + | |
| + | $$ \tag{a1 } |
| + | {\mathcal K} = {\mathcal K} _ {+} \dot{+} {\mathcal K} _ {-} , |
| + | $$ |
| + | |
| + | $ ( {\mathcal K} _ {+} , [ \cdot , \cdot ] ) $ |
| + | and $ ( {\mathcal K} _ {-} , - [ \cdot , \cdot ] ) $ |
| + | are Hilbert spaces (cf. [[Hilbert space|Hilbert space]]) and $ [ {\mathcal K} _ {+} , {\mathcal K} _ {-} ] = \{ 0 \} $. |
| + | It is always assumed that $ {\mathcal K} _ {+} , {\mathcal K} _ {-} \neq \{ 0 \} $( |
| + | otherwise $ ( {\mathcal K} , [ \cdot , \cdot ] ) $ |
| + | or $ ( {\mathcal K} , - [ \cdot , \cdot ] ) $ |
| + | is a Hilbert space); $ [ \cdot , \cdot ] $ |
| + | is called the indefinite inner product of the Krein space $ {\mathcal K} $. |
| + | If, in particular, $ \kappa = \min ( \mathop{\rm dim} {\mathcal K} _ {+} , \mathop{\rm dim} {\mathcal K} _ {-} ) < \infty $, |
| + | then $ {\mathcal K} _ {-} $ |
| + | is a $ \pi _ \kappa $- |
| + | space or Pontryagin space of index $ \kappa $( |
| + | cf. also [[Pontryagin space|Pontryagin space]]); in the sequel, for a $ \pi _ \kappa $- |
| + | space it is always assumed that $ \kappa = \mathop{\rm dim} {\mathcal K} _ {+} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | Using the decomposition (a1), on the Krein space $ ( {\mathcal K} , [ \cdot , \cdot ] ) $ |
| + | a Hilbert inner product $ ( \cdot , \cdot ) $ |
| + | can be defined as follows: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584032.png" /></td> </tr></table>
| + | $$ \tag{a2 } |
| + | ( x , y ) = [ x _ {+} , y _ {+} ] - [ x _ {-} , y _ {-} ] , |
| + | $$ |
| | | |
− | Although the decomposition (a1) is not unique, the decompositions of the components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584033.png" /> are uniquely determined and the Hilbert norms, generated by different decompositions (a1) according to (a2), are equivalent. All topological notions in a Krein space, if not stated explicitly otherwise, refer to this topology. In the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584034.png" />, the orthogonal projections onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584036.png" /> are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584038.png" />, respectively. Then for the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584039.png" />, called a fundamental symmetry, one has
| + | $$ |
| + | x = x _ {+} + x _ {-} ,\ y = y _ {+} + y _ {-} ,\ x _ \pm , y _ \pm \in {\mathcal K} _ {+} . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584040.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a3)</td></tr></table>
| + | Although the decomposition (a1) is not unique, the decompositions of the components $ {\mathcal K} _ \pm $ |
| + | are uniquely determined and the Hilbert norms, generated by different decompositions (a1) according to (a2), are equivalent. All topological notions in a Krein space, if not stated explicitly otherwise, refer to this topology. In the Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $, |
| + | the orthogonal projections onto $ {\mathcal K} _ {+} $ |
| + | and $ {\mathcal K} _ {-} $ |
| + | are denoted by $ P _ {+} $ |
| + | and $ P _ {-} $, |
| + | respectively. Then for the operator $ J = P _ {+} - P _ {-} $, |
| + | called a fundamental symmetry, one has |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584041.png" /> has the properties: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584043.png" />. Conversely, given a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584044.png" /> and in it an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584045.png" /> with these properties (or, more generally, an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584046.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584047.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584048.png" />), then an indefinite inner product is defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584049.png" /> by (a3) (or, respectively, by the relation
| + | $$ \tag{a3 } |
| + | [ x , y ] = ( J x , y ) ,\ \ |
| + | x , y \in {\mathcal K} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584050.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a4)</td></tr></table>
| + | and $ J $ |
| + | has the properties: $ J ^ {2} = I $, |
| + | $ J = J ^ {*} $. |
| + | Conversely, given a Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $ |
| + | and in it an operator $ J $ |
| + | with these properties (or, more generally, an operator $ G $ |
| + | with $ G = G ^ {*} $, |
| + | $ 0 \in \rho ( G) $), |
| + | then an indefinite inner product is defined on $ {\mathcal K} $ |
| + | by (a3) (or, respectively, by the relation |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584051.png" /> is a Krein space. Because of this construction, Krein spaces are sometimes called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584053.png" />-spaces.
| + | $$ \tag{a4 } |
| + | [ x , y ] = ( G x , y ) ,\ \ |
| + | x , y \in {\mathcal K} \textrm{ ) } , |
| + | $$ |
| | | |
− | If, more generally, a Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584054.png" /> and a bounded self-adjoint, not semi-definite, operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584055.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584056.png" /> are given, the relation (a4) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584057.png" /> defines a Hermitian sesquilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584058.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584059.png" />. This form can be extended by continuity to the completion of the quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584060.png" /> with respect to the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584061.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584062.png" />). This completion, equipped with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584063.png" />, is a Krein space containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584064.png" /> as a dense subset.
| + | and $ ( {\mathcal K} , [ \cdot , \cdot ] ) $ |
| + | is a Krein space. Because of this construction, Krein spaces are sometimes called $ J $- |
| + | spaces. |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584065.png" /> is a real and locally summable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584066.png" /> which assumes positive and negative values on sets of positive [[Lebesgue measure|Lebesgue measure]], then the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584067.png" /> of all (classes of) measurable functions (cf. [[Measurable function|Measurable function]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584068.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584069.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584070.png" /> and equipped with the indefinite inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584071.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584072.png" />) is a Krein space. More generally, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584073.png" /> is a real function which is locally of bounded variation and not isotone on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584075.png" /> denotes its total variation, then the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584076.png" />, of all measurable functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584077.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584078.png" /> and equipped with the indefinite inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584079.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584080.png" />) is a Krein space. | + | If, more generally, a Hilbert space $ ( {\mathcal H} , ( \cdot , \cdot ) ) $ |
| + | and a bounded self-adjoint, not semi-definite, operator $ G $ |
| + | in $ {\mathcal H} $ |
| + | are given, the relation (a4) with $ x , y \in {\mathcal H} $ |
| + | defines a Hermitian sesquilinear form $ [ \cdot , \cdot ] $ |
| + | on $ {\mathcal H} $. |
| + | This form can be extended by continuity to the completion of the quotient space $ {\mathcal H} / \mathop{\rm Ker} G $ |
| + | with respect to the norm $ \| | G | ^ {1/2} x \| $( |
| + | $ x \in {\mathcal H} $). |
| + | This completion, equipped with $ [ \cdot , \cdot ] $, |
| + | is a Krein space containing $ {\mathcal H} / \mathop{\rm Ker} G $ |
| + | as a dense subset. |
| | | |
− | Further, a complex linear space with a Hermitian sesquilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584081.png" />, which has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584082.png" /> negative squares (that is, each linear manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584083.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584084.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584085.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584086.png" />, is of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584087.png" /> and at least one such manifold is of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584088.png" />), can be canonically imbedded into a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584089.png" />-space by taking a quotient space and completing it (see [[#References|[a4]]], [[#References|[a2]]], [[#References|[a9]]], [[#References|[a11]]]).
| + | If $ r $ |
| + | is a real and locally summable function on $ \mathbf R $ |
| + | which assumes positive and negative values on sets of positive [[Lebesgue measure|Lebesgue measure]], then the space $ L _ {2,r} $ |
| + | of all (classes of) measurable functions (cf. [[Measurable function|Measurable function]]) $ f $ |
| + | on $ \mathbf R $ |
| + | such that $ \int _ {- \infty } ^ \infty | f | ^ {2} | r | d x < \infty $ |
| + | and equipped with the indefinite inner product $ [ f , g ] = \int _ {- \infty } ^ \infty f \overline{g}\; r d x $( |
| + | $ f , g \in L _ {2,r} $) |
| + | is a Krein space. More generally, if $ \sigma $ |
| + | is a real function which is locally of bounded variation and not isotone on $ \mathbf R $ |
| + | and $ | \sigma | $ |
| + | denotes its total variation, then the space $ L _ {2} ( \sigma ) $, |
| + | of all measurable functions $ f $ |
| + | such that $ \int _ {- \infty } ^ \infty | f | ^ {2} d | \sigma | < \infty $ |
| + | and equipped with the indefinite inner product $ [ f , g ] = \int _ {- \infty } ^ {- \infty } f \overline{g}\; d \sigma $( |
| + | $ f , g \in L _ {2} ( \sigma ) $) |
| + | is a Krein space. |
| | | |
− | The indefinite inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584090.png" /> on the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584091.png" /> gives rise to a classification of the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584092.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584093.png" /> is called positive, non-negative, neutral, etc. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584095.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584096.png" />, etc. A linear manifold or a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584097.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584098.png" /> is called positive, non-negative, neutral, etc. if all its non-zero elements are positive, non-negative, neutral, etc. The set of all, e.g., non-negative elements is not linear, but it contains subspaces, and among them maximal ones, called maximal non-negative subspaces. All maximal non-negative subspaces of the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k05584099.png" /> have the same dimension (as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840100.png" />). A subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840101.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840102.png" /> (with the decomposition (a1)) is maximal non-negative if and only if it can be written as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840103.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840104.png" />, the angular operator of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840105.png" />, is a [[Contraction(2)|contraction]] from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840106.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840107.png" />. A dual pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840108.png" /> of subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840109.png" /> is defined as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840110.png" /> is a non-negative subspace, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840111.png" /> is a non-positive subspace and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840112.png" />. Any dual pairs is contained in a maximal dual pair (maximality of dual pairs is defined in a natural way by inclusion); in a maximal dual pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840113.png" /> the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840114.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840115.png" />) is maximal non-negative (respectively, non-positive) (R.S. Phillips).
| + | Further, a complex linear space with a Hermitian sesquilinear form $ [ \cdot , \cdot ] $, |
| + | which has $ \kappa $ |
| + | negative squares (that is, each linear manifold $ {\mathcal L} \subset {\mathcal K} $ |
| + | with $ [ x , x ] < 0 $ |
| + | for $ x \in {\mathcal L} $, |
| + | $ x \neq 0 $, |
| + | is of dimension $ \leq \kappa $ |
| + | and at least one such manifold is of dimension $ \kappa $), |
| + | can be canonically imbedded into a $ \pi _ \kappa $- |
| + | space by taking a quotient space and completing it (see [[#References|[a4]]], [[#References|[a2]]], [[#References|[a9]]], [[#References|[a11]]]). |
| | | |
− | Using the indefinite inner product, orthogonality can be defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840116.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840117.png" /> are called orthogonal if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840118.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840119.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840120.png" />. Some properties of orthogonality in a Hilbert space are preserved; however, there are also essential differences; e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840121.png" /> can contain non-zero vectors; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840122.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840123.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840124.png" /> is neutral, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840125.png" /> is equivalent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840126.png" />.
| + | The indefinite inner product $ [ \cdot , \cdot ] $ |
| + | on the Krein space $ {\mathcal K} $ |
| + | gives rise to a classification of the elements of $ {\mathcal K} $: |
| + | $ x \in {\mathcal K} $ |
| + | is called positive, non-negative, neutral, etc. if $ [ x , x ] > 0 $, |
| + | $ [ x , x ] < 0 $, |
| + | $ [ x , x ] = 0 $, |
| + | etc. A linear manifold or a subspace $ {\mathcal L} $ |
| + | in $ {\mathcal K} $ |
| + | is called positive, non-negative, neutral, etc. if all its non-zero elements are positive, non-negative, neutral, etc. The set of all, e.g., non-negative elements is not linear, but it contains subspaces, and among them maximal ones, called maximal non-negative subspaces. All maximal non-negative subspaces of the Krein space $ {\mathcal K} $ |
| + | have the same dimension (as $ {\mathcal K} _ {+} $). |
| + | A subspace $ {\mathcal L} $ |
| + | of $ {\mathcal K} $( |
| + | with the decomposition (a1)) is maximal non-negative if and only if it can be written as $ {\mathcal L} = \{ {x _ {+} + K _ {\mathcal L} x _ {+} } : {x _ {+} \in {\mathcal K} _ {+} } \} $, |
| + | where $ K _ {\mathcal L} $, |
| + | the angular operator of $ {\mathcal L} $, |
| + | is a [[Contraction(2)|contraction]] from $ ( {\mathcal K} _ {+} , [ \cdot , \cdot ] ) $ |
| + | into $ ( {\mathcal K} _ {-} , [ \cdot , \cdot ] ) $. |
| + | A dual pair $ ( {\mathcal L} _ {+} , {\mathcal L} _ {-} ) $ |
| + | of subspaces of $ {\mathcal K} $ |
| + | is defined as follows: $ {\mathcal L} _ {+} $ |
| + | is a non-negative subspace, $ {\mathcal L} _ {-} $ |
| + | is a non-positive subspace and $ [ {\mathcal L} _ {+} , {\mathcal L} _ {-} ] = \{ 0 \} $. |
| + | Any dual pairs is contained in a maximal dual pair (maximality of dual pairs is defined in a natural way by inclusion); in a maximal dual pair $ ( {\mathcal L} _ {+} , {\mathcal L} _ {-} ) $ |
| + | the subspace $ {\mathcal L} _ {+} $( |
| + | respectively, $ {\mathcal L} _ {-} $) |
| + | is maximal non-negative (respectively, non-positive) (R.S. Phillips). |
| | | |
− | For a densely-defined [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840127.png" /> in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840128.png" /> an adjoint <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840129.png" /> (sometimes called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840131.png" />-adjoint) is defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840132.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840133.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840134.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840135.png" /> denotes the adjoint of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840136.png" /> in the Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840137.png" /> (see (a2)), then evidently <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840138.png" />. Now in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840139.png" /> classes of operators are defined more or less similarly to the case of a Hilbert space: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840140.png" /> is symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840141.png" />, self-adjoint if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840142.png" />, dissipative if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840143.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840144.png" />), contractive if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840145.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840146.png" />), unitary if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840147.png" /> is bounded, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840148.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840149.png" />, etc. Also, new classes of operators arise: E.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840150.png" /> is a plus-operator if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840151.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840152.png" />, and a doubly plus-operator if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840153.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840154.png" /> are plus-operators. In a Krein space a densely-defined [[Isometric operator|isometric operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840155.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840156.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840157.png" />) need not be continuous. As in a Hilbert space, self-adjoint and unitary, symmetric and isometric, dissipative and contractive operators are related by the [[Cayley transform|Cayley transform]]. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840158.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840159.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840160.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840161.png" /> is unitary.
| + | Using the indefinite inner product, orthogonality can be defined in $ {\mathcal K} $: |
| + | $ x , y \in {\mathcal K} $ |
| + | are called orthogonal if $ [ x , y ] = 0 $; |
| + | if $ {\mathcal L} \subset {\mathcal K} $, |
| + | then $ {\mathcal L} ^ \perp = \{ {x } : {[ x , {\mathcal L} ] = \{ 0 \} } \} $. |
| + | Some properties of orthogonality in a Hilbert space are preserved; however, there are also essential differences; e.g., $ {\mathcal L} \cap {\mathcal L} ^ \perp $ |
| + | can contain non-zero vectors; $ {\mathcal L} \cap {\mathcal L} ^ \perp $ |
| + | coincides with $ {\mathcal L} $ |
| + | if $ {\mathcal L} $ |
| + | is neutral, and $ {\mathcal L} \cap {\mathcal L} ^ \perp = \{ 0 \} $ |
| + | is equivalent to $ \overline{ {{\mathcal L} + {\mathcal L} ^ \perp }}\; = {\mathcal K} $. |
| | | |
− | The spectrum of a self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840162.png" /> in a Krein space is not necessarily real (it can even cover the whole plane), but it is symmetric with respect to the real axis. Similarly, the spectrum of a unitary operator is symmetric with respect to the unit circle.
| + | For a densely-defined [[Linear operator|linear operator]] $ T $ |
| + | in the Krein space $ ( {\mathcal K} , [ \cdot , \cdot ] ) $ |
| + | an adjoint $ T ^ { + } $( |
| + | sometimes called $ J $- |
| + | adjoint) is defined by $ [ T x , y ] = [ x , T ^ { + } y ] $( |
| + | $ x \in {\mathcal D} ( T) $, |
| + | $ y \in {\mathcal D} ( T ^ { + } ) $). |
| + | If $ T ^ { * } $ |
| + | denotes the adjoint of $ T $ |
| + | in the Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $( |
| + | see (a2)), then evidently $ T ^ { + } = J T ^ { * } J $. |
| + | Now in the Krein space $ {\mathcal K} $ |
| + | classes of operators are defined more or less similarly to the case of a Hilbert space: $ T $ |
| + | is symmetric if $ T \subset T ^ { + } $, |
| + | self-adjoint if $ T = T ^ { + } $, |
| + | dissipative if $ \mathop{\rm Im} [ T x , x ] \geq 0 $( |
| + | $ x \in {\mathcal D} ( T) $), |
| + | contractive if $ [ T x , T x ] \leq [ x , x ] $( |
| + | $ x \in {\mathcal K} $), |
| + | unitary if $ T $ |
| + | is bounded, $ {\mathcal D} ( T) = {\mathcal K} $ |
| + | and $ T ^ { + } T = I = T T ^ { + } $, |
| + | etc. Also, new classes of operators arise: E.g., $ T $ |
| + | is a plus-operator if $ [ x , x ] \geq 0 $ |
| + | implies $ [ T x , T x ] \geq 0 $, |
| + | and a doubly plus-operator if $ T $ |
| + | and $ T ^ { + } $ |
| + | are plus-operators. In a Krein space a densely-defined [[Isometric operator|isometric operator]] $ T $( |
| + | i.e. $ [ T x , T y ] = [ x , y ] $ |
| + | for all $ x , y \in {\mathcal D} ( T) $) |
| + | need not be continuous. As in a Hilbert space, self-adjoint and unitary, symmetric and isometric, dissipative and contractive operators are related by the [[Cayley transform|Cayley transform]]. E.g., if $ A = A ^ {+} $, |
| + | $ z _ {0} \neq \overline{z}\; _ {0} $ |
| + | and $ z _ {0} \in \rho ( A) $, |
| + | then $ U = ( A - \overline{z}\; _ {0} ) ( A - z _ {0} ) ^ {-1} $ |
| + | is unitary. |
| + | |
| + | The spectrum of a self-adjoint operator $ A $ |
| + | in a Krein space is not necessarily real (it can even cover the whole plane), but it is symmetric with respect to the real axis. Similarly, the spectrum of a unitary operator is symmetric with respect to the unit circle. |
| | | |
| The indefinite inner product sometimes gives a classification of the points of the spectrum of an operator: An eigen value is said to be of positive type (negative type, etc.) if the corresponding eigen space is positive (negative, etc.). | | The indefinite inner product sometimes gives a classification of the points of the spectrum of an operator: An eigen value is said to be of positive type (negative type, etc.) if the corresponding eigen space is positive (negative, etc.). |
| | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840163.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840164.png" /> are isolated eigen values of the self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840165.png" /> in a Krein space, then for the corresponding Riesz projections <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840166.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840167.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840168.png" />, and if, e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840169.png" />, then the restrictions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840170.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840171.png" /> have the same Jordan structure. If in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840172.png" />-space the symmetric operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840173.png" /> has a real non-semi-simple eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840174.png" />, then the corresponding algebraic eigen space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840175.png" /> can be decomposed into a direct orthogonal sum: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840176.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840177.png" /> is a positive subspace contained in the geometric eigen space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840178.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840179.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840180.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840181.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840182.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840183.png" /> are the lengths of the Jordan chains of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840184.png" />, one puts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840185.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840186.png" /> is a non-real eigen value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840187.png" />, one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840188.png" /> as the dimension of the corresponding algebraic eigen space. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840189.png" />, where the sum extends over all eigen values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840190.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840191.png" /> in the closed upper half-plane. In particular, the length of any Jordan chain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840192.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840193.png" />, and the number of eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840194.png" /> in the open upper half-plane, and also the number of non-semi-simple eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840195.png" />, does not exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840196.png" />. | + | If $ \lambda $, |
| + | $ \overline \lambda \; $ |
| + | are isolated eigen values of the self-adjoint operator $ A $ |
| + | in a Krein space, then for the corresponding Riesz projections $ E _ \lambda $, |
| + | $ E _ {\overline \lambda \; } $ |
| + | one has $ E _ {\overline \lambda \; } = E _ \lambda ^ {+} $, |
| + | and if, e.g., $ \mathop{\rm dim} {\mathcal R} ( E _ \lambda ) < \infty $, |
| + | then the restrictions $ A \mid _ { {\mathcal R} ( E _ \lambda ) } $ |
| + | and $ A \mid _ { {\mathcal R} ( E _ {\overline \lambda \; } ) } $ |
| + | have the same Jordan structure. If in a $ \pi _ \kappa $- |
| + | space the symmetric operator $ A $ |
| + | has a real non-semi-simple eigen value $ \lambda $, |
| + | then the corresponding algebraic eigen space $ {\mathcal E} _ \lambda $ |
| + | can be decomposed into a direct orthogonal sum: $ {\mathcal E} _ \lambda = {\mathcal E} _ \lambda ^ { \prime } + {\mathcal E} _ \lambda ^ { \prime\prime } $, |
| + | where $ {\mathcal E} _ \lambda ^ { \prime\prime } $ |
| + | is a positive subspace contained in the geometric eigen space of $ A $ |
| + | at $ \lambda $, |
| + | and $ {\mathcal E} _ \lambda ^ { \prime } \neq \{ 0 \} $ |
| + | is invariant under $ A $ |
| + | with $ \mathop{\rm dim} {\mathcal E} _ \lambda ^ { \prime } < \infty $; |
| + | if $ d _ {1} \dots d _ {r} $ |
| + | are the lengths of the Jordan chains of $ A \mid _ { {\mathcal E} _ \lambda ^ { \prime } } $, |
| + | one puts $ \rho ( \lambda )= \sum_{j=1}^ \kappa [ d _ {j} /2 ] $; |
| + | if $ \lambda $ |
| + | is a non-real eigen value of $ A $, |
| + | one defines $ \rho ( \lambda ) $ |
| + | as the dimension of the corresponding algebraic eigen space. Then $ \sum \rho ( \lambda ) \leq \kappa $, |
| + | where the sum extends over all eigen values $ \lambda $ |
| + | of $ A $ |
| + | in the closed upper half-plane. In particular, the length of any Jordan chain of $ A $ |
| + | is $ \leq 2 \kappa + 1 $, |
| + | and the number of eigen values of $ A $ |
| + | in the open upper half-plane, and also the number of non-semi-simple eigen values of $ A $, |
| + | does not exceed $ \kappa $. |
| | | |
− | Specific results for Krein spaces are statements about the existence of maximal non-negative (or maximal non-positive) subspaces, which are invariant under a given operator. The first general result of this type was proved by L.S. Pontryagin in 1944, stating that a self-adjoint operator in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840197.png" />-space has a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840198.png" />-dimensional non-positive (that is, a maximal non-positive) invariant subspace. Subsequently, similar results were proved for various classes of operators in Krein spaces. E.g., a bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840199.png" /> in a Krein space has a maximal non-negative invariant subspace if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840200.png" /> is compact and, additionally, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840201.png" /> is self-adjoint or dissipative or unitary or a plus-operator, etc. (see [[#References|[a2]]], [[#References|[a4]]]). One possibility for proving these results, e.g. for a unitary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840202.png" />, is to establish the existence of a fixed point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840203.png" /> of the fractional-linear transformation | + | Specific results for Krein spaces are statements about the existence of maximal non-negative (or maximal non-positive) subspaces, which are invariant under a given operator. The first general result of this type was proved by L.S. Pontryagin in 1944, stating that a self-adjoint operator in a $ \pi _ \kappa $- |
| + | space has a $ \kappa $- |
| + | dimensional non-positive (that is, a maximal non-positive) invariant subspace. Subsequently, similar results were proved for various classes of operators in Krein spaces. E.g., a bounded linear operator $ T $ |
| + | in a Krein space has a maximal non-negative invariant subspace if $ P _ {+} T P _ {-} $ |
| + | is compact and, additionally, $ T $ |
| + | is self-adjoint or dissipative or unitary or a plus-operator, etc. (see [[#References|[a2]]], [[#References|[a4]]]). One possibility for proving these results, e.g. for a unitary operator $ T $, |
| + | is to establish the existence of a fixed point $ K _ {0} $ |
| + | of the fractional-linear transformation |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840204.png" /></td> </tr></table>
| + | $$ |
| + | K \rightarrow ( T _ {21} + T _ {22} K ) ( T _ {11} + T _ {12} K ) ^ {-1} , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840205.png" /> is a contraction from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840206.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840207.png" /> (an angular operator) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840208.png" /> is the matrix representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840209.png" /> with respect to (a1). By different methods also in other cases the existence of a maximal non-negative invariant subspace has been proved, e.g.: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840210.png" /> is unitary and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840211.png" /> is uniformly bounded for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840212.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840213.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840214.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840215.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840216.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840217.png" /> is bounded, self-adjoint and there exists a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840218.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840219.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840220.png" />). In many cases these maximal non-positive invariant subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840221.png" /> can be specified by properties of the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840222.png" />. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840223.png" /> is bounded, self-adjoint and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840224.png" /> is compact, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840225.png" /> can be chosen such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840226.png" />. There are also results about the existence of a common invariant maximal non-positive subspace for a commuting family of operators, e.g.: A commuting family of bounded self-adjoint operators in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840227.png" />-space has a common maximal non-negative invariant subspace (M.A. Naimark; for applications in the representation theory of groups in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840228.png" />-spaces see [[#References|[a19]]]). Phillips asked ([[#References|[a16]]]) if a dual pair of subspaces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840229.png" /> which are invariant under a commutative algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840230.png" /> of bounded self-adjoint operators in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840231.png" /> can always be extended to a maximal dual pair whose subspaces are still invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840232.png" /> (which would imply that each bounded self-adjoint operator in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840233.png" /> has a maximal non-negative invariant subspace). Only partial solutions to this problem are known (cf. [[#References|[a4]]], [[#References|[a2]]], [[#References|[a14]]]). | + | where $ K $ |
| + | is a contraction from $ {\mathcal K} _ {+} $ |
| + | into $ {\mathcal K} _ {-} $( |
| + | an angular operator) and $ ( T _ {ij} ) _ {1} ^ {2} $ |
| + | is the matrix representation of $ T $ |
| + | with respect to (a1). By different methods also in other cases the existence of a maximal non-negative invariant subspace has been proved, e.g.: 1) $ T $ |
| + | is unitary and $ \| T ^ { n } \| $ |
| + | is uniformly bounded for all $ n = 0 , 1 ,\dots $; |
| + | 2) $ [ T x , T x ] > [ x , x ] $ |
| + | for all $ x \in {\mathcal K} $, |
| + | $ x \neq 0 $, |
| + | and $ \sigma ( T) \cap \{ | \rho | = 1 \} = \emptyset $; |
| + | and 3) $ T $ |
| + | is bounded, self-adjoint and there exists a polynomial $ p $ |
| + | such that $ [ p ( T) x , x ] \geq 0 $( |
| + | $ x \in {\mathcal K} $). |
| + | In many cases these maximal non-positive invariant subspaces $ {\mathcal L} $ |
| + | can be specified by properties of the spectrum of $ A \mid _ {\mathcal L} $. |
| + | E.g., if $ T $ |
| + | is bounded, self-adjoint and $ P _ {+} T P _ {-} $ |
| + | is compact, then $ {\mathcal L} $ |
| + | can be chosen such that $ \mathop{\rm Im} \sigma ( A \mid _ {\mathcal L} ) \geq 0 $. |
| + | There are also results about the existence of a common invariant maximal non-positive subspace for a commuting family of operators, e.g.: A commuting family of bounded self-adjoint operators in a $ \pi _ \kappa $- |
| + | space has a common maximal non-negative invariant subspace (M.A. Naimark; for applications in the representation theory of groups in $ \pi _ \kappa $- |
| + | spaces see [[#References|[a19]]]). Phillips asked ([[#References|[a16]]]) if a dual pair of subspaces of $ {\mathcal K} $ |
| + | which are invariant under a commutative algebra $ A $ |
| + | of bounded self-adjoint operators in the Krein space $ {\mathcal K} $ |
| + | can always be extended to a maximal dual pair whose subspaces are still invariant under $ A $( |
| + | which would imply that each bounded self-adjoint operator in $ {\mathcal K} $ |
| + | has a maximal non-negative invariant subspace). Only partial solutions to this problem are known (cf. [[#References|[a4]]], [[#References|[a2]]], [[#References|[a14]]]). |
| | | |
− | A self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840234.png" /> in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840235.png" /> is called definitizable (positizable in [[#References|[a4]]]) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840236.png" /> and if there exists a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840237.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840238.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840239.png" />). Each self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840240.png" /> in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840241.png" />-space has this property (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840242.png" /> can be chosen to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840243.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840244.png" /> the minimal polynomial of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840245.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840246.png" /> being a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840247.png" />-dimensional non-positive invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840248.png" />); also, each self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840249.png" /> in a Krein space for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840250.png" /> and for which the Hermitian sesquilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840251.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840252.png" />) has a finite number of negative squares, is definitizable. | + | A self-adjoint operator $ A $ |
| + | in the Krein space $ {\mathcal K} $ |
| + | is called definitizable (positizable in [[#References|[a4]]]) if $ \rho ( A) \neq \emptyset $ |
| + | and if there exists a polynomial $ p $ |
| + | such that $ [ p ( A) x , x ] \geq 0 $( |
| + | $ x \in {\mathcal D} ( p ( A) ) $). |
| + | Each self-adjoint operator $ A $ |
| + | in a $ \pi _ \kappa $- |
| + | space has this property (where $ p $ |
| + | can be chosen to be $ q \overline{q}\; $ |
| + | with $ q $ |
| + | the minimal polynomial of $ A \mid _ {\mathcal L} $, |
| + | $ {\mathcal L} $ |
| + | being a $ \kappa $- |
| + | dimensional non-positive invariant subspace of $ A $); |
| + | also, each self-adjoint operator $ A $ |
| + | in a Krein space for which $ \rho ( A ) \neq \emptyset $ |
| + | and for which the Hermitian sesquilinear form $ [ A x , y ] $( |
| + | $ x , y \in {\mathcal D} ( A) $) |
| + | has a finite number of negative squares, is definitizable. |
| | | |
− | The non-real spectrum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840253.png" /> of the definitizable operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840254.png" /> consists of at most finitely many eigen values, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840255.png" /> has a [[Spectral function|spectral function]], with possibly certain critical points [[#References|[a13]]], [[#References|[a2]]]. This means that there is a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840256.png" /> (of critical points) such that on the semi-ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840257.png" />, consisting of all bounded intervals of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840258.png" /> with end points not in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840259.png" /> and their complements, a homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840260.png" /> with values in the set of all self-adjoint projections in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840261.png" /> is defined, such that for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840262.png" />: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840263.png" /> is a positive (negative) subspace if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840264.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840265.png" />) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840266.png" /> for some definitizing polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840267.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840268.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840269.png" /> is in the double commutant of the [[Resolvent|resolvent]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840270.png" />; and c) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840271.png" /> is bounded, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840272.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840273.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840274.png" />. If, in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840275.png" /> is bounded and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840276.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840277.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840278.png" />, and one has | + | The non-real spectrum $ \sigma _ {0} ( A) $ |
| + | of the definitizable operator $ A $ |
| + | consists of at most finitely many eigen values, and $ A $ |
| + | has a [[Spectral function|spectral function]], with possibly certain critical points [[#References|[a13]]], [[#References|[a2]]]. This means that there is a finite set $ c ( A) \subset \mathbf R \cup \{ \infty \} $( |
| + | of critical points) such that on the semi-ring $ \mathbf R _ {A} $, |
| + | consisting of all bounded intervals of $ \mathbf R $ |
| + | with end points not in $ c ( A) $ |
| + | and their complements, a homomorphism $ E $ |
| + | with values in the set of all self-adjoint projections in the Krein space $ {\mathcal K} $ |
| + | is defined, such that for $ \Delta \in \mathbf R _ {A} $: |
| + | a) $ E ( \Delta ) {\mathcal K} $ |
| + | is a positive (negative) subspace if $ p > 0 $( |
| + | respectively, $ p < 0 $) |
| + | on $ \overline \Delta \; \cap \sigma ( A) $ |
| + | for some definitizing polynomial $ p $ |
| + | of $ A $; |
| + | b) $ E ( \Delta ) $ |
| + | is in the double commutant of the [[Resolvent|resolvent]] of $ A $; |
| + | and c) if $ \Delta $ |
| + | is bounded, then $ E ( \Delta ) {\mathcal K} \subset {\mathcal D} ( A) $ |
| + | and $ \sigma ( A \mid _ {E ( \Delta ) {\mathcal K} } ) \subset \overline \Delta \; $, |
| + | $ \sigma ( A \mid _ {( I - E ( \Delta ) ) {\mathcal K} } ) \subset \overline{ {( \mathbf R \setminus \Delta ) }}\; \cup \sigma _ {0} ( A) $. |
| + | If, in particular, $ A $ |
| + | is bounded and $ [ A x , x ] \geq 0 $( |
| + | $ x \in {\mathcal K} $), |
| + | then $ c ( A) \subset \{ 0 \} $, |
| + | and one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840279.png" /></td> </tr></table>
| + | $$ |
| + | A x = \int\limits _ {- \| A \| } ^ { {\| } A \| } \lambda E ( d \lambda ) x + N x , |
| + | $$ |
| | | |
− | for some bounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840280.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840281.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840282.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840283.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840284.png" />). | + | for some bounded operator $ N $ |
| + | such that $ N = N ^ {+} $, |
| + | $ N ^ {2} = 0 $, |
| + | $ [ N x , x ] \geq 0 $( |
| + | $ x \in {\mathcal K} $). |
| | | |
− | If the spectrum of a definitizable operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840285.png" /> is discrete, then the linear span of its algebraic eigen spaces is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840286.png" />; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840287.png" /> is compact and self-adjoint in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840288.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840289.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840290.png" />, then there is a [[Riesz basis|Riesz basis]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840291.png" /> consisting of eigen and associated vectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840292.png" /> (I.S. Iokhvidov). | + | If the spectrum of a definitizable operator $ A $ |
| + | is discrete, then the linear span of its algebraic eigen spaces is dense in $ {\mathcal K} $; |
| + | if $ A $ |
| + | is compact and self-adjoint in a $ \pi _ \kappa $- |
| + | space $ {\mathcal K} $ |
| + | and $ 0 \notin \sigma _ {p} ( A) $, |
| + | then there is a [[Riesz basis|Riesz basis]] of $ {\mathcal K} $ |
| + | consisting of eigen and associated vectors of $ A $( |
| + | I.S. Iokhvidov). |
| | | |
− | There is a theory of extensions of symmetric operators to self-adjoint operators and of generalized resolvents in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840293.png" />-spaces, and also in Krein spaces, which is similar to the Hilbert space situation. The same is true for dilation theory: Each bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840294.png" /> in a Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840295.png" /> has a unitary dilation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840296.png" /> in some Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840297.png" /> ([[#References|[a2]]]). In this context one has the following result: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840298.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840299.png" /> be Krein spaces, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840300.png" /> a simply-connected open domain with smooth boundary such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840301.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840302.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840303.png" /> be a function which is holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840304.png" /> whose values are bounded linear operators from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840305.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840306.png" />. Then there exists a Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840307.png" /> and a unitary operator | + | There is a theory of extensions of symmetric operators to self-adjoint operators and of generalized resolvents in $ \pi _ \kappa $- |
| + | spaces, and also in Krein spaces, which is similar to the Hilbert space situation. The same is true for dilation theory: Each bounded linear operator $ T $ |
| + | in a Krein space $ {\mathcal K} $ |
| + | has a unitary dilation $ T $ |
| + | in some Krein space $ {\mathcal K} \tilde \supset {\mathcal K} $([[#References|[a2]]]). In this context one has the following result: Let $ {\mathcal K} _ {1} $, |
| + | $ {\mathcal K} _ {2} $ |
| + | be Krein spaces, $ {\mathcal D} $ |
| + | a simply-connected open domain with smooth boundary such that $ 0 \in {\mathcal D} $, |
| + | $ \overline{ {\mathcal D} }\; \subset \{ {z } : {| z | < 1 } \} $, |
| + | and let $ \Theta $ |
| + | be a function which is holomorphic in $ {\mathcal D} $ |
| + | whose values are bounded linear operators from $ {\mathcal K} _ {1} $ |
| + | to $ {\mathcal K} _ {2} $. |
| + | Then there exists a Krein space $ {\mathcal K} $ |
| + | and a unitary operator |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840308.png" /></td> </tr></table>
| + | $$ |
| + | U = \left ( |
| + | \begin{array}{ll} |
| + | U _ {11} &U _ {12} \\ |
| + | U _ {21} &U _ {22} \\ |
| + | \end{array} |
| + | \right ) : {\mathcal K} \oplus {\mathcal K} _ {1} \rightarrow {\mathcal K} \oplus {\mathcal K} _ {2} , |
| + | $$ |
| | | |
| such that | | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840309.png" /></td> </tr></table>
| + | $$ |
| + | \Theta ( z) = U _ {22} + z U _ {21} ( I - z U _ {11} ) ^ {-1} U _ {12} \ \ |
| + | ( z \in {\mathcal D} ) |
| + | $$ |
| | | |
− | (T.Ya. Azizov, see [[#References|[a2]]], [[#References|[a6]]]; here unitary means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840310.png" /> maps the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840311.png" /> continuously onto the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840312.png" />, preserving the indefinite inner product). | + | (T.Ya. Azizov, see [[#References|[a2]]], [[#References|[a6]]]; here unitary means that $ U $ |
| + | maps the Krein space $ {\mathcal K} \oplus {\mathcal K} _ {1} $ |
| + | continuously onto the Krein space $ {\mathcal K} \oplus {\mathcal K} _ {2} $, |
| + | preserving the indefinite inner product). |
| | | |
− | Some of the first papers about Krein spaces or, more generally, spaces with indefinite inner product, were stimulated by problems of (quantum) mechanics ([[#References|[a4]]], [[#References|[a2]]]; see also [[#References|[a18]]], [[#References|[a17]]]). Operators in Krein spaces arise also in a natural way in problems in mathematical analysis. Some examples of these are: I) Consider the canonical system of differential equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840313.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840314.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840315.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840316.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840317.png" /> matrices, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840318.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840319.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840320.png" /> be the corresponding matrizant (cf. [[Cauchy operator|Cauchy operator]]): <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840321.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840322.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840323.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840324.png" />-unitary (that is, unitary with respect to the inner product defined in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840325.png" /> by the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840326.png" />, see (a3)), and, e.g., in the stability theory for periodic equations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840327.png" /> the classification of the eigen values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840328.png" /> into those of positive or negative type plays an essential role ([[#References|[a5]]], [[#References|[a8]]]). II) The integral operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840329.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840330.png" /> real and of bounded variation on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840331.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840332.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840333.png" />), is self-adjoint in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840334.png" />. III) The theory of dual pairs of subspaces of a Krein space and their extensions to maximal dual pairs is related to certain questions in the theory of extensions of dissipative operators in a Hilbert space to maximal dissipative ones. Phillips started these investigations in connection with the Cauchy problem for dissipative hyperbolic and parabolic systems (see [[#References|[a2]]], [[#References|[a4]]] for references). IV) With the monic operator polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840335.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840336.png" /> bounded self-adjoint operators in some Hilbert space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840337.png" />, one can associate the so-called companion operator | + | Some of the first papers about Krein spaces or, more generally, spaces with indefinite inner product, were stimulated by problems of (quantum) mechanics ([[#References|[a4]]], [[#References|[a2]]]; see also [[#References|[a18]]], [[#References|[a17]]]). Operators in Krein spaces arise also in a natural way in problems in mathematical analysis. Some examples of these are: I) Consider the canonical system of differential equations $ J \dot{x} ( t) = i H ( t) x ( t) $ |
| + | on $ [ 0 , \infty ) $, |
| + | where $ H ( t) $, |
| + | $ J $ |
| + | are $ ( n \times n ) $ |
| + | matrices, $ H ( t ) \geq 0 $, |
| + | $ J = J ^ {*} = J ^ {-1} $, |
| + | and let $ U ( t) $ |
| + | be the corresponding matrizant (cf. [[Cauchy operator|Cauchy operator]]): $ J \dot{U} ( t) = i H ( t) U ( t) $, |
| + | $ U ( 0) = I _ {n} $. |
| + | Then $ U ( t) $ |
| + | is $ J $- |
| + | unitary (that is, unitary with respect to the inner product defined in $ \mathbf C ^ {n} $ |
| + | by the matrix $ J $, |
| + | see (a3)), and, e.g., in the stability theory for periodic equations $ ( H ( t) = H ( T + t ) ) $ |
| + | the classification of the eigen values of $ U ( T) $ |
| + | into those of positive or negative type plays an essential role ([[#References|[a5]]], [[#References|[a8]]]). II) The integral operator $ x ( \cdot ) \rightarrow \int _ {a} ^ {b} K ( \cdot , s ) x ( s ) d \sigma ( s) $, |
| + | $ \sigma $ |
| + | real and of bounded variation on the interval $ [ a , b ] $, |
| + | $ K ( s , t ) = \overline{ {K ( t , s ) }}\; $( |
| + | $ s , t \in [ a , b ] $), |
| + | is self-adjoint in the Krein space $ L _ {2} ( \sigma ) $. |
| + | III) The theory of dual pairs of subspaces of a Krein space and their extensions to maximal dual pairs is related to certain questions in the theory of extensions of dissipative operators in a Hilbert space to maximal dissipative ones. Phillips started these investigations in connection with the Cauchy problem for dissipative hyperbolic and parabolic systems (see [[#References|[a2]]], [[#References|[a4]]] for references). IV) With the monic operator polynomial $ L ( \lambda ) = \lambda ^ {n} I + \lambda ^ {n-1} B _ {n-1} + \dots + \lambda B _ {1} + B _ {0} $, |
| + | $ B _ {j} $ |
| + | bounded self-adjoint operators in some Hilbert space $ {\mathcal H} $, |
| + | one can associate the so-called companion operator |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840338.png" /></td> </tr></table>
| + | $$ |
| + | A = \left ( |
| + | \begin{array}{ccccc} |
| + | - B _ {n-1} &- B _ {n-2} &\dots &- B _ {1} &- B _ {0} \\ |
| + | I & 0 &\dots & 0 & 0 \\ |
| + | \cdot &\cdot &\dots &\cdot &\cdot \\ |
| + | 0 & 0 &\dots & I & 0 \\ |
| + | \end{array} |
| + | \right ) , |
| + | $$ |
| | | |
− | which is self-adjoint in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840339.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840340.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840341.png" />), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840342.png" /> is the inner product in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840343.png" /> and | + | which is self-adjoint in the Krein space $ {\mathcal K} = {\mathcal H} ^ {n} $, |
| + | $ [ x , y ] = ( G x , y ) $( |
| + | $ x , y \in {\mathcal H} ^ {n} $), |
| + | where $ ( \cdot , \cdot ) $ |
| + | is the inner product in $ {\mathcal H} ^ {n} $ |
| + | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840344.png" /></td> </tr></table>
| + | $$ |
| + | G = \left ( |
| + | \begin{array}{cccc} |
| + | 0 & 0 &\dots & I \\ |
| + | 0 & 0 &{} &B _ {n-1} \\ |
| + | \cdot &\cdot &{} &\cdot \\ |
| + | \cdot &\cdot &{} &\cdot \\ |
| + | \cdot &\cdot &{} &\cdot \\ |
| + | I &B _ {n-1} &\dots &B _ {1} \\ |
| + | \end{array} |
| + | \right ) . |
| + | $$ |
| | | |
− | If, e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840345.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840346.png" /> is compact and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840347.png" />, the results about the existence of maximal non-negative invariant subspaces mentioned above imply that there exists a bounded linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840348.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840349.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840350.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840351.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840352.png" /> [[#References|[a12]]]. In a similar way, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840353.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840354.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840355.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840356.png" /> matrices such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840357.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840358.png" /> positive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840359.png" /> negative eigen values, the solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840360.png" /> of the matrix [[Riccati equation|Riccati equation]] | + | If, e.g., $ n = 2 $ |
| + | and $ B _ {0} $ |
| + | is compact and $ \geq 0 $, |
| + | the results about the existence of maximal non-negative invariant subspaces mentioned above imply that there exists a bounded linear operator $ Z $ |
| + | in $ {\mathcal H} $ |
| + | satisfying $ Z ^ {2} + B _ {1} Z + B _ {0} = 0 $, |
| + | $ Z ^ {*} Z \leq B _ {0} $ |
| + | and $ \mathop{\rm Im} \sigma ( Z) \geq 0 $[[#References|[a12]]]. In a similar way, if $ B \geq 0 $, |
| + | $ C = C ^ {*} $ |
| + | and $ A $ |
| + | are $ ( n \times n ) $ |
| + | matrices such that $ G = \left({\begin{array}{cc} -C & A^* \\ A & B\end{array}}\right)$ has $ n $ |
| + | positive and $ n $ |
| + | negative eigen values, the solutions $ X $ |
| + | of the matrix [[Riccati equation|Riccati equation]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840361.png" /></td> </tr></table>
| + | $$ |
| + | X B X + X A + A ^ {*} X - C = 0 |
| + | $$ |
| | | |
− | with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840362.png" /> are in bijective correspondence with all maximal non-positive subspaces which are invariant under the self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840363.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840364.png" />-dimensional Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840365.png" />, equipped with the indefinite inner product (a4) (see [[#References|[a8]]]). V) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840366.png" /> is a formally-symmetric regular ordinary differential operator on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840367.png" /> with symmetric boundary conditions at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840368.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840369.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840370.png" /> is a summable function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840371.png" /> which is not of constant sign (a.e.) on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840372.png" />, then the differential equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840373.png" /> leads to a self-adjoint operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840374.png" /> in the Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840375.png" /> with inner product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840376.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840377.png" /> is semi-bounded from below, the operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840378.png" /> is definitizable. VI) Krein spaces can be associated with certain eigen value problems for ordinary differential operators containing the eigen value parameters in the boundary conditions. E.g., consider in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840379.png" /> the problem | + | with $ ( X ^ {*} - X ) ( A + B X ) \geq 0 $ |
| + | are in bijective correspondence with all maximal non-positive subspaces which are invariant under the self-adjoint |
| + | operator $ T = i \left({\begin{array}{cc} A & B \\ C & -A^*\end{array}}\right)$ |
| + | in the $ 2n $-dimensional Krein space $ {\mathcal K} = \mathbf C ^ {2n} $, |
| + | equipped with the indefinite inner product (a4) (see [[#References|[a8]]]). V) If $ L $ |
| + | is a formally-symmetric regular ordinary differential operator on the interval $ [ a , b ] $ |
| + | with symmetric boundary conditions at $ a $ |
| + | and $ b $, |
| + | and $ r $ |
| + | is a summable function on $ [ a , b ] $ |
| + | which is not of constant sign (a.e.) on $ [ a , b ] $, |
| + | then the differential equation $ L y - \lambda r y = r f $ |
| + | leads to a self-adjoint operator $ A $ |
| + | in the Krein space $ {\mathcal K} = L _ {2,r} $ |
| + | with inner product $ [ f , g ] = \int _ {a} ^ {b} f \overline{g}\; r d x $. |
| + | If $ L $ |
| + | is semi-bounded from below, the operator $ A $ |
| + | is definitizable. VI) Krein spaces can be associated with certain eigen value problems for ordinary differential operators containing the eigen value parameters in the boundary conditions. E.g., consider in $ L _ {2} = L _ {2} [ 0 , \infty ) $ |
| + | the problem |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840380.png" /></td> </tr></table>
| + | $$ |
| + | - |
| + | \frac{d ^ {2} y }{d x ^ {2} } |
| + | + |
| + | q y - \lambda y = f , |
| + | $$ |
| | | |
− | which is supposed to have a limit point at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840381.png" /> and with a boundary condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840382.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840383.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840384.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840385.png" /> are functions which are holomorphic on some set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840386.png" /> and satisfying a symmetry condition). The solution of this problem can be represented as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840387.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840388.png" />), where, in general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840389.png" /> is a self-adjoint operator in some Krein space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840390.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840391.png" /> is the orthogonal projection from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840392.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840393.png" /> [[#References|[a17]]]. VII) Certain classes of analytic functions are closely related to the theory of operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840394.png" />-spaces. This concerns, e.g., functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840395.png" /> which are defined and meromorphic in the upper half-plane (or the unit disc) and which are such that the kernel | + | which is supposed to have a limit point at $ \infty $ |
| + | and with a boundary condition $ \alpha ( \lambda ) y ( 0) + \beta ( \lambda ) y ^ \prime ( 0) = 0 $ |
| + | at $ x = 0 $( |
| + | $ \alpha $, |
| + | $ \beta $ |
| + | are functions which are holomorphic on some set $ D _ {\alpha , \beta } \subset \mathbf C $ |
| + | and satisfying a symmetry condition). The solution of this problem can be represented as $ y = P ( A - \lambda I ) ^ {-1} f $( |
| + | $ f \in L _ {2} $), |
| + | where, in general, $ A $ |
| + | is a self-adjoint operator in some Krein space $ {\mathcal K} = L _ {2} \oplus {\mathcal K} _ {1} $ |
| + | and $ P $ |
| + | is the orthogonal projection from $ {\mathcal K} $ |
| + | onto $ L _ {2} $[[#References|[a17]]]. VII) Certain classes of analytic functions are closely related to the theory of operators in $ \pi _ \kappa $- |
| + | spaces. This concerns, e.g., functions $ f $ |
| + | which are defined and meromorphic in the upper half-plane (or the unit disc) and which are such that the kernel |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840396.png" /></td> </tr></table>
| + | $$ |
| + | N _ {f} ( z , \rho ) = \ |
| + | |
| + | \frac{f ( z) - \overline{ {f ( \rho ) }}\; }{z - \overline \rho \; } |
| + | |
| + | $$ |
| | | |
| (or | | (or |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840397.png" /></td> </tr></table>
| + | $$ |
| + | \left . S _ {f} ( z , \overline \rho \; ) = \ |
| + | |
| + | \frac{1 - f ( z) \overline{ {f ( \rho ) }}\; }{1 - z \overline \rho \; } |
| + | \right ) |
| + | $$ |
| | | |
− | has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840398.png" /> negative squares (that is, for arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840399.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840400.png" />, the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840401.png" /> has at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840402.png" /> negative eigen values and for at least one choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840403.png" /> it has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840404.png" /> negative eigen values). Corresponding extrapolation or moment problems can be treated by making use of results of the theory of symmetric or isometric operators in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840405.png" />-spaces (see [[#References|[a12]]], [[#References|[a2]]]). | + | has $ \kappa $ |
| + | negative squares (that is, for arbitrary $ n $ |
| + | and $ z _ {1} \dots z _ {n} $, |
| + | the matrix $ ( N _ {f} ( z _ {i} , z _ {j} ) ) _ {1} ^ {n} $ |
| + | has at most $ n $ |
| + | negative eigen values and for at least one choice of $ n , z _ {1} \dots z _ {n} $ |
| + | it has $ \kappa $ |
| + | negative eigen values). Corresponding extrapolation or moment problems can be treated by making use of results of the theory of symmetric or isometric operators in $ \pi _ \kappa $- |
| + | spaces (see [[#References|[a12]]], [[#References|[a2]]]). |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.Ya Azizov, I.S. Iokhvidov, "Linear operators in spaces with indefinite metric and their applications" ''Russian Math. Surveys'' , '''15''' (1981) pp. 438–490 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''17''' (1979) pp. 113–205</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.Ya Azizov, I.S. Iokhvidov, "Foundations of the theory of linear operators in spaces with indefinite metric" , Moscow (1986) (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> T. Ando, "Linear operators in Krein spaces" , Hokkaido Univ. (1979)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> J. Bognár, "Indefinite inner product spaces" , Springer (1974)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> A. Dijksma, H. Langer, H.S.V. de Snoo, "Unitary colligations in Krein spaces and their role in the extension theory of isometries and symmetric linear relations in Hilbert spaces" S. Kurepa (ed.) et al. (ed.) , ''Foundational analysis II'' , ''Lect. notes in math.'' , '''1247''' , Springer (1987) pp. 1–42</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> A. Dijksma, H. Langer, H.S.V. de Snoo, "Symmetric Sturm–Liouville operators with eigenvalues depending boundary conditions" , ''Oscillation, Bifurcations and Chaos'' , ''CMS Conf. Proc.'' , '''8''' , Amer. Math. Soc. (1987) pp. 87–116</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> I. [I. Gokhberg] Gohberg, P. Lancaster, L. Rodman, "Matrices and indefinite scalar products" , Birkhäuser (1983)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> I.S. [I.S. Iokhvidov] Iohidov, M.G. Krein, H. Langer, "Introduction to the spectral theory of operators in spaces with an indefinite metric" , Akademie Verlag (1982)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> V.I. Istraţescu, "Inner product spaces. Theory and applications" , Reidel (1987)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> M.G. Krein, "Introduction to the geometry of indefinite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840406.png" />-spaces and the theory of operators in these spaces" , ''Second Math. Summer School'' , '''1''' , Kiev (1965) pp. 15–92 (In Russian)</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> M.G. Krein, H. Langer, "Ueber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840407.png" /> zusammenhängen, I: Einige Funktionenklassen und ihre Darstellungen" ''Math. Nachr.'' , '''77''' (1977) pp. 187–236</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> H. Langer, "Spectral functions of definitizable operators in Krein spaces" D. Butković (ed.) et al. (ed.) , ''Functional analysis'' , ''Lect. notes in math.'' , '''948''' , Springer (1982) pp. 1–46</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> H. Langer, "Invariante Teilräume definisierbarer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k055/k055840/k055840408.png" />-selbstadjungierter Operatoren" ''Ann. Acad. Sci. Fenn A. I'' , '''475''' (1971)</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973)</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> R.S. Phillips, "The extensions of dual subspaces invariant under an algebra" , ''Proc. Internat. Symp. Linear Spaces (Jerusalem, 1960)'' , Pergamon (1961) pp. 366–398</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> L. Bracci, G. Morchio, F. Strocchi, "Wigner's theorem on symmetries in indefinite metric spaces" ''Comm. Math. Phys.'' , '''41''' (1975) pp. 289–299</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> K.L. Nagy, "State vector spaces with indefinite metric in quantum field theory" , Noordhoff (1966)</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> M.A. Naimark, R.S. Ismagilov, "Representations of groups and algebras in a space with indefinite metric" ''Itogi Nauk. i Tekhn. Mat. Anal.'' (1969) pp. 73–105 (In Russian)</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> M.G. Krein, H. Langer, "On some mathematical principles in the linear theory of damped oscillations of continua" ''Integral Equations, Operator Theory'' , '''1''' (1978) pp. 364–399; 539–566 ''Proc. Internat. Symp. Appl. Theory of Functions in Continuum Mechanics, Tbilizi'' , '''2''' (1963) pp. 283–322</TD></TR></table> | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> T.Ya Azizov, I.S. Iokhvidov, "Linear operators in spaces with indefinite metric and their applications" ''Russian Math. Surveys'' , '''15''' (1981) pp. 438–490 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''17''' (1979) pp. 113–205</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> T.Ya Azizov, I.S. Iokhvidov, "Foundations of the theory of linear operators in spaces with indefinite metric" , Moscow (1986) (In Russian)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> T. Ando, "Linear operators in Krein spaces" , Hokkaido Univ. (1979)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> J. Bognár, "Indefinite inner product spaces" , Springer (1974)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian)</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> A. Dijksma, H. Langer, H.S.V. de Snoo, "Unitary colligations in Krein spaces and their role in the extension theory of isometries and symmetric linear relations in Hilbert spaces" S. Kurepa (ed.) et al. (ed.) , ''Foundational analysis II'' , ''Lect. notes in math.'' , '''1247''' , Springer (1987) pp. 1–42</td></tr><tr><td valign="top">[a7]</td> <td valign="top"> A. Dijksma, H. Langer, H.S.V. de Snoo, "Symmetric Sturm–Liouville operators with eigenvalues depending boundary conditions" , ''Oscillation, Bifurcations and Chaos'' , ''CMS Conf. Proc.'' , '''8''' , Amer. Math. Soc. (1987) pp. 87–116</td></tr><tr><td valign="top">[a8]</td> <td valign="top"> I. [I. Gokhberg] Gohberg, P. Lancaster, L. Rodman, "Matrices and indefinite scalar products" , Birkhäuser (1983)</td></tr><tr><td valign="top">[a9]</td> <td valign="top"> I.S. [I.S. Iokhvidov] Iohidov, M.G. Krein, H. Langer, "Introduction to the spectral theory of operators in spaces with an indefinite metric" , Akademie Verlag (1982)</td></tr><tr><td valign="top">[a10]</td> <td valign="top"> V.I. Istraţescu, "Inner product spaces. Theory and applications" , Reidel (1987)</td></tr><tr><td valign="top">[a11]</td> <td valign="top"> M.G. Krein, "Introduction to the geometry of indefinite $J$-spaces and the theory of operators in these spaces" , ''Second Math. Summer School'' , '''1''' , Kiev (1965) pp. 15–92 (In Russian)</td></tr><tr><td valign="top">[a12]</td> <td valign="top"> M.G. Krein, H. Langer, "Ueber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\pi _ { \kappa}$ zusammenhängen, I: Einige Funktionenklassen und ihre Darstellungen" ''Math. Nachr.'' , '''77''' (1977) pp. 187–236</td></tr><tr><td valign="top">[a13]</td> <td valign="top"> H. Langer, "Spectral functions of definitizable operators in Krein spaces" D. Butković (ed.) et al. (ed.) , ''Functional analysis'' , ''Lect. notes in math.'' , '''948''' , Springer (1982) pp. 1–46</td></tr><tr><td valign="top">[a14]</td> <td valign="top"> H. Langer, "Invariante Teilräume definisierbarer $J$-selbstadjungierter Operatoren" ''Ann. Acad. Sci. Fenn A. I'' , '''475''' (1971)</td></tr><tr><td valign="top">[a15]</td> <td valign="top"> J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973)</td></tr><tr><td valign="top">[a16]</td> <td valign="top"> R.S. Phillips, "The extensions of dual subspaces invariant under an algebra" , ''Proc. Internat. Symp. Linear Spaces (Jerusalem, 1960)'' , Pergamon (1961) pp. 366–398</td></tr><tr><td valign="top">[a17]</td> <td valign="top"> L. Bracci, G. Morchio, F. Strocchi, "Wigner's theorem on symmetries in indefinite metric spaces" ''Comm. Math. Phys.'' , '''41''' (1975) pp. 289–299</td></tr><tr><td valign="top">[a18]</td> <td valign="top"> K.L. Nagy, "State vector spaces with indefinite metric in quantum field theory" , Noordhoff (1966)</td></tr><tr><td valign="top">[a19]</td> <td valign="top"> M.A. Naimark, R.S. Ismagilov, "Representations of groups and algebras in a space with indefinite metric" ''Itogi Nauk. i Tekhn. Mat. Anal.'' (1969) pp. 73–105 (In Russian)</td></tr><tr><td valign="top">[a20]</td> <td valign="top"> M.G. Krein, H. Langer, "On some mathematical principles in the linear theory of damped oscillations of continua" ''Integral Equations, Operator Theory'' , '''1''' (1978) pp. 364–399; 539–566 ''Proc. Internat. Symp. Appl. Theory of Functions in Continuum Mechanics, Tbilizi'' , '''2''' (1963) pp. 283–322</td></tr></table> |
Let $ {\mathcal K} $
be a complex linear space on which a Hermitian sesquilinear form $ [ \cdot , \cdot ] $
is defined (i.e. a mapping $ [ \cdot , \cdot ] : {\mathcal K} \times {\mathcal K} \rightarrow \mathbf C $
such that $ [ \alpha _ {1} x _ {1} + \alpha _ {2} x _ {2} , y ] = \alpha _ {1} [ x _ {1} , y ] + \alpha _ {2} [ x _ {2} , y ] $
and $ [ x , y ] = \overline{ {[ y , x ] }}\; $
for all $ x _ {1} , x _ {2} , x , y \in {\mathcal K} $,
$ \alpha _ {1} , \alpha _ {2} \in \mathbf C $).
Then $ {\mathcal K} $(
or, more exactly, $ ( {\mathcal K} , [ \cdot , \cdot ] ) $)
is called a Krein space if in $ {\mathcal K} $
there are two linear manifolds $ {\mathcal K} _ \pm $
such that
$$ \tag{a1 }
{\mathcal K} = {\mathcal K} _ {+} \dot{+} {\mathcal K} _ {-} ,
$$
$ ( {\mathcal K} _ {+} , [ \cdot , \cdot ] ) $
and $ ( {\mathcal K} _ {-} , - [ \cdot , \cdot ] ) $
are Hilbert spaces (cf. Hilbert space) and $ [ {\mathcal K} _ {+} , {\mathcal K} _ {-} ] = \{ 0 \} $.
It is always assumed that $ {\mathcal K} _ {+} , {\mathcal K} _ {-} \neq \{ 0 \} $(
otherwise $ ( {\mathcal K} , [ \cdot , \cdot ] ) $
or $ ( {\mathcal K} , - [ \cdot , \cdot ] ) $
is a Hilbert space); $ [ \cdot , \cdot ] $
is called the indefinite inner product of the Krein space $ {\mathcal K} $.
If, in particular, $ \kappa = \min ( \mathop{\rm dim} {\mathcal K} _ {+} , \mathop{\rm dim} {\mathcal K} _ {-} ) < \infty $,
then $ {\mathcal K} _ {-} $
is a $ \pi _ \kappa $-
space or Pontryagin space of index $ \kappa $(
cf. also Pontryagin space); in the sequel, for a $ \pi _ \kappa $-
space it is always assumed that $ \kappa = \mathop{\rm dim} {\mathcal K} _ {+} $.
Using the decomposition (a1), on the Krein space $ ( {\mathcal K} , [ \cdot , \cdot ] ) $
a Hilbert inner product $ ( \cdot , \cdot ) $
can be defined as follows:
$$ \tag{a2 }
( x , y ) = [ x _ {+} , y _ {+} ] - [ x _ {-} , y _ {-} ] ,
$$
$$
x = x _ {+} + x _ {-} ,\ y = y _ {+} + y _ {-} ,\ x _ \pm , y _ \pm \in {\mathcal K} _ {+} .
$$
Although the decomposition (a1) is not unique, the decompositions of the components $ {\mathcal K} _ \pm $
are uniquely determined and the Hilbert norms, generated by different decompositions (a1) according to (a2), are equivalent. All topological notions in a Krein space, if not stated explicitly otherwise, refer to this topology. In the Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $,
the orthogonal projections onto $ {\mathcal K} _ {+} $
and $ {\mathcal K} _ {-} $
are denoted by $ P _ {+} $
and $ P _ {-} $,
respectively. Then for the operator $ J = P _ {+} - P _ {-} $,
called a fundamental symmetry, one has
$$ \tag{a3 }
[ x , y ] = ( J x , y ) ,\ \
x , y \in {\mathcal K} ,
$$
and $ J $
has the properties: $ J ^ {2} = I $,
$ J = J ^ {*} $.
Conversely, given a Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $
and in it an operator $ J $
with these properties (or, more generally, an operator $ G $
with $ G = G ^ {*} $,
$ 0 \in \rho ( G) $),
then an indefinite inner product is defined on $ {\mathcal K} $
by (a3) (or, respectively, by the relation
$$ \tag{a4 }
[ x , y ] = ( G x , y ) ,\ \
x , y \in {\mathcal K} \textrm{ ) } ,
$$
and $ ( {\mathcal K} , [ \cdot , \cdot ] ) $
is a Krein space. Because of this construction, Krein spaces are sometimes called $ J $-
spaces.
If, more generally, a Hilbert space $ ( {\mathcal H} , ( \cdot , \cdot ) ) $
and a bounded self-adjoint, not semi-definite, operator $ G $
in $ {\mathcal H} $
are given, the relation (a4) with $ x , y \in {\mathcal H} $
defines a Hermitian sesquilinear form $ [ \cdot , \cdot ] $
on $ {\mathcal H} $.
This form can be extended by continuity to the completion of the quotient space $ {\mathcal H} / \mathop{\rm Ker} G $
with respect to the norm $ \| | G | ^ {1/2} x \| $(
$ x \in {\mathcal H} $).
This completion, equipped with $ [ \cdot , \cdot ] $,
is a Krein space containing $ {\mathcal H} / \mathop{\rm Ker} G $
as a dense subset.
If $ r $
is a real and locally summable function on $ \mathbf R $
which assumes positive and negative values on sets of positive Lebesgue measure, then the space $ L _ {2,r} $
of all (classes of) measurable functions (cf. Measurable function) $ f $
on $ \mathbf R $
such that $ \int _ {- \infty } ^ \infty | f | ^ {2} | r | d x < \infty $
and equipped with the indefinite inner product $ [ f , g ] = \int _ {- \infty } ^ \infty f \overline{g}\; r d x $(
$ f , g \in L _ {2,r} $)
is a Krein space. More generally, if $ \sigma $
is a real function which is locally of bounded variation and not isotone on $ \mathbf R $
and $ | \sigma | $
denotes its total variation, then the space $ L _ {2} ( \sigma ) $,
of all measurable functions $ f $
such that $ \int _ {- \infty } ^ \infty | f | ^ {2} d | \sigma | < \infty $
and equipped with the indefinite inner product $ [ f , g ] = \int _ {- \infty } ^ {- \infty } f \overline{g}\; d \sigma $(
$ f , g \in L _ {2} ( \sigma ) $)
is a Krein space.
Further, a complex linear space with a Hermitian sesquilinear form $ [ \cdot , \cdot ] $,
which has $ \kappa $
negative squares (that is, each linear manifold $ {\mathcal L} \subset {\mathcal K} $
with $ [ x , x ] < 0 $
for $ x \in {\mathcal L} $,
$ x \neq 0 $,
is of dimension $ \leq \kappa $
and at least one such manifold is of dimension $ \kappa $),
can be canonically imbedded into a $ \pi _ \kappa $-
space by taking a quotient space and completing it (see [a4], [a2], [a9], [a11]).
The indefinite inner product $ [ \cdot , \cdot ] $
on the Krein space $ {\mathcal K} $
gives rise to a classification of the elements of $ {\mathcal K} $:
$ x \in {\mathcal K} $
is called positive, non-negative, neutral, etc. if $ [ x , x ] > 0 $,
$ [ x , x ] < 0 $,
$ [ x , x ] = 0 $,
etc. A linear manifold or a subspace $ {\mathcal L} $
in $ {\mathcal K} $
is called positive, non-negative, neutral, etc. if all its non-zero elements are positive, non-negative, neutral, etc. The set of all, e.g., non-negative elements is not linear, but it contains subspaces, and among them maximal ones, called maximal non-negative subspaces. All maximal non-negative subspaces of the Krein space $ {\mathcal K} $
have the same dimension (as $ {\mathcal K} _ {+} $).
A subspace $ {\mathcal L} $
of $ {\mathcal K} $(
with the decomposition (a1)) is maximal non-negative if and only if it can be written as $ {\mathcal L} = \{ {x _ {+} + K _ {\mathcal L} x _ {+} } : {x _ {+} \in {\mathcal K} _ {+} } \} $,
where $ K _ {\mathcal L} $,
the angular operator of $ {\mathcal L} $,
is a contraction from $ ( {\mathcal K} _ {+} , [ \cdot , \cdot ] ) $
into $ ( {\mathcal K} _ {-} , [ \cdot , \cdot ] ) $.
A dual pair $ ( {\mathcal L} _ {+} , {\mathcal L} _ {-} ) $
of subspaces of $ {\mathcal K} $
is defined as follows: $ {\mathcal L} _ {+} $
is a non-negative subspace, $ {\mathcal L} _ {-} $
is a non-positive subspace and $ [ {\mathcal L} _ {+} , {\mathcal L} _ {-} ] = \{ 0 \} $.
Any dual pairs is contained in a maximal dual pair (maximality of dual pairs is defined in a natural way by inclusion); in a maximal dual pair $ ( {\mathcal L} _ {+} , {\mathcal L} _ {-} ) $
the subspace $ {\mathcal L} _ {+} $(
respectively, $ {\mathcal L} _ {-} $)
is maximal non-negative (respectively, non-positive) (R.S. Phillips).
Using the indefinite inner product, orthogonality can be defined in $ {\mathcal K} $:
$ x , y \in {\mathcal K} $
are called orthogonal if $ [ x , y ] = 0 $;
if $ {\mathcal L} \subset {\mathcal K} $,
then $ {\mathcal L} ^ \perp = \{ {x } : {[ x , {\mathcal L} ] = \{ 0 \} } \} $.
Some properties of orthogonality in a Hilbert space are preserved; however, there are also essential differences; e.g., $ {\mathcal L} \cap {\mathcal L} ^ \perp $
can contain non-zero vectors; $ {\mathcal L} \cap {\mathcal L} ^ \perp $
coincides with $ {\mathcal L} $
if $ {\mathcal L} $
is neutral, and $ {\mathcal L} \cap {\mathcal L} ^ \perp = \{ 0 \} $
is equivalent to $ \overline{ {{\mathcal L} + {\mathcal L} ^ \perp }}\; = {\mathcal K} $.
For a densely-defined linear operator $ T $
in the Krein space $ ( {\mathcal K} , [ \cdot , \cdot ] ) $
an adjoint $ T ^ { + } $(
sometimes called $ J $-
adjoint) is defined by $ [ T x , y ] = [ x , T ^ { + } y ] $(
$ x \in {\mathcal D} ( T) $,
$ y \in {\mathcal D} ( T ^ { + } ) $).
If $ T ^ { * } $
denotes the adjoint of $ T $
in the Hilbert space $ ( {\mathcal K} , ( \cdot , \cdot ) ) $(
see (a2)), then evidently $ T ^ { + } = J T ^ { * } J $.
Now in the Krein space $ {\mathcal K} $
classes of operators are defined more or less similarly to the case of a Hilbert space: $ T $
is symmetric if $ T \subset T ^ { + } $,
self-adjoint if $ T = T ^ { + } $,
dissipative if $ \mathop{\rm Im} [ T x , x ] \geq 0 $(
$ x \in {\mathcal D} ( T) $),
contractive if $ [ T x , T x ] \leq [ x , x ] $(
$ x \in {\mathcal K} $),
unitary if $ T $
is bounded, $ {\mathcal D} ( T) = {\mathcal K} $
and $ T ^ { + } T = I = T T ^ { + } $,
etc. Also, new classes of operators arise: E.g., $ T $
is a plus-operator if $ [ x , x ] \geq 0 $
implies $ [ T x , T x ] \geq 0 $,
and a doubly plus-operator if $ T $
and $ T ^ { + } $
are plus-operators. In a Krein space a densely-defined isometric operator $ T $(
i.e. $ [ T x , T y ] = [ x , y ] $
for all $ x , y \in {\mathcal D} ( T) $)
need not be continuous. As in a Hilbert space, self-adjoint and unitary, symmetric and isometric, dissipative and contractive operators are related by the Cayley transform. E.g., if $ A = A ^ {+} $,
$ z _ {0} \neq \overline{z}\; _ {0} $
and $ z _ {0} \in \rho ( A) $,
then $ U = ( A - \overline{z}\; _ {0} ) ( A - z _ {0} ) ^ {-1} $
is unitary.
The spectrum of a self-adjoint operator $ A $
in a Krein space is not necessarily real (it can even cover the whole plane), but it is symmetric with respect to the real axis. Similarly, the spectrum of a unitary operator is symmetric with respect to the unit circle.
The indefinite inner product sometimes gives a classification of the points of the spectrum of an operator: An eigen value is said to be of positive type (negative type, etc.) if the corresponding eigen space is positive (negative, etc.).
If $ \lambda $,
$ \overline \lambda \; $
are isolated eigen values of the self-adjoint operator $ A $
in a Krein space, then for the corresponding Riesz projections $ E _ \lambda $,
$ E _ {\overline \lambda \; } $
one has $ E _ {\overline \lambda \; } = E _ \lambda ^ {+} $,
and if, e.g., $ \mathop{\rm dim} {\mathcal R} ( E _ \lambda ) < \infty $,
then the restrictions $ A \mid _ { {\mathcal R} ( E _ \lambda ) } $
and $ A \mid _ { {\mathcal R} ( E _ {\overline \lambda \; } ) } $
have the same Jordan structure. If in a $ \pi _ \kappa $-
space the symmetric operator $ A $
has a real non-semi-simple eigen value $ \lambda $,
then the corresponding algebraic eigen space $ {\mathcal E} _ \lambda $
can be decomposed into a direct orthogonal sum: $ {\mathcal E} _ \lambda = {\mathcal E} _ \lambda ^ { \prime } + {\mathcal E} _ \lambda ^ { \prime\prime } $,
where $ {\mathcal E} _ \lambda ^ { \prime\prime } $
is a positive subspace contained in the geometric eigen space of $ A $
at $ \lambda $,
and $ {\mathcal E} _ \lambda ^ { \prime } \neq \{ 0 \} $
is invariant under $ A $
with $ \mathop{\rm dim} {\mathcal E} _ \lambda ^ { \prime } < \infty $;
if $ d _ {1} \dots d _ {r} $
are the lengths of the Jordan chains of $ A \mid _ { {\mathcal E} _ \lambda ^ { \prime } } $,
one puts $ \rho ( \lambda )= \sum_{j=1}^ \kappa [ d _ {j} /2 ] $;
if $ \lambda $
is a non-real eigen value of $ A $,
one defines $ \rho ( \lambda ) $
as the dimension of the corresponding algebraic eigen space. Then $ \sum \rho ( \lambda ) \leq \kappa $,
where the sum extends over all eigen values $ \lambda $
of $ A $
in the closed upper half-plane. In particular, the length of any Jordan chain of $ A $
is $ \leq 2 \kappa + 1 $,
and the number of eigen values of $ A $
in the open upper half-plane, and also the number of non-semi-simple eigen values of $ A $,
does not exceed $ \kappa $.
Specific results for Krein spaces are statements about the existence of maximal non-negative (or maximal non-positive) subspaces, which are invariant under a given operator. The first general result of this type was proved by L.S. Pontryagin in 1944, stating that a self-adjoint operator in a $ \pi _ \kappa $-
space has a $ \kappa $-
dimensional non-positive (that is, a maximal non-positive) invariant subspace. Subsequently, similar results were proved for various classes of operators in Krein spaces. E.g., a bounded linear operator $ T $
in a Krein space has a maximal non-negative invariant subspace if $ P _ {+} T P _ {-} $
is compact and, additionally, $ T $
is self-adjoint or dissipative or unitary or a plus-operator, etc. (see [a2], [a4]). One possibility for proving these results, e.g. for a unitary operator $ T $,
is to establish the existence of a fixed point $ K _ {0} $
of the fractional-linear transformation
$$
K \rightarrow ( T _ {21} + T _ {22} K ) ( T _ {11} + T _ {12} K ) ^ {-1} ,
$$
where $ K $
is a contraction from $ {\mathcal K} _ {+} $
into $ {\mathcal K} _ {-} $(
an angular operator) and $ ( T _ {ij} ) _ {1} ^ {2} $
is the matrix representation of $ T $
with respect to (a1). By different methods also in other cases the existence of a maximal non-negative invariant subspace has been proved, e.g.: 1) $ T $
is unitary and $ \| T ^ { n } \| $
is uniformly bounded for all $ n = 0 , 1 ,\dots $;
2) $ [ T x , T x ] > [ x , x ] $
for all $ x \in {\mathcal K} $,
$ x \neq 0 $,
and $ \sigma ( T) \cap \{ | \rho | = 1 \} = \emptyset $;
and 3) $ T $
is bounded, self-adjoint and there exists a polynomial $ p $
such that $ [ p ( T) x , x ] \geq 0 $(
$ x \in {\mathcal K} $).
In many cases these maximal non-positive invariant subspaces $ {\mathcal L} $
can be specified by properties of the spectrum of $ A \mid _ {\mathcal L} $.
E.g., if $ T $
is bounded, self-adjoint and $ P _ {+} T P _ {-} $
is compact, then $ {\mathcal L} $
can be chosen such that $ \mathop{\rm Im} \sigma ( A \mid _ {\mathcal L} ) \geq 0 $.
There are also results about the existence of a common invariant maximal non-positive subspace for a commuting family of operators, e.g.: A commuting family of bounded self-adjoint operators in a $ \pi _ \kappa $-
space has a common maximal non-negative invariant subspace (M.A. Naimark; for applications in the representation theory of groups in $ \pi _ \kappa $-
spaces see [a19]). Phillips asked ([a16]) if a dual pair of subspaces of $ {\mathcal K} $
which are invariant under a commutative algebra $ A $
of bounded self-adjoint operators in the Krein space $ {\mathcal K} $
can always be extended to a maximal dual pair whose subspaces are still invariant under $ A $(
which would imply that each bounded self-adjoint operator in $ {\mathcal K} $
has a maximal non-negative invariant subspace). Only partial solutions to this problem are known (cf. [a4], [a2], [a14]).
A self-adjoint operator $ A $
in the Krein space $ {\mathcal K} $
is called definitizable (positizable in [a4]) if $ \rho ( A) \neq \emptyset $
and if there exists a polynomial $ p $
such that $ [ p ( A) x , x ] \geq 0 $(
$ x \in {\mathcal D} ( p ( A) ) $).
Each self-adjoint operator $ A $
in a $ \pi _ \kappa $-
space has this property (where $ p $
can be chosen to be $ q \overline{q}\; $
with $ q $
the minimal polynomial of $ A \mid _ {\mathcal L} $,
$ {\mathcal L} $
being a $ \kappa $-
dimensional non-positive invariant subspace of $ A $);
also, each self-adjoint operator $ A $
in a Krein space for which $ \rho ( A ) \neq \emptyset $
and for which the Hermitian sesquilinear form $ [ A x , y ] $(
$ x , y \in {\mathcal D} ( A) $)
has a finite number of negative squares, is definitizable.
The non-real spectrum $ \sigma _ {0} ( A) $
of the definitizable operator $ A $
consists of at most finitely many eigen values, and $ A $
has a spectral function, with possibly certain critical points [a13], [a2]. This means that there is a finite set $ c ( A) \subset \mathbf R \cup \{ \infty \} $(
of critical points) such that on the semi-ring $ \mathbf R _ {A} $,
consisting of all bounded intervals of $ \mathbf R $
with end points not in $ c ( A) $
and their complements, a homomorphism $ E $
with values in the set of all self-adjoint projections in the Krein space $ {\mathcal K} $
is defined, such that for $ \Delta \in \mathbf R _ {A} $:
a) $ E ( \Delta ) {\mathcal K} $
is a positive (negative) subspace if $ p > 0 $(
respectively, $ p < 0 $)
on $ \overline \Delta \; \cap \sigma ( A) $
for some definitizing polynomial $ p $
of $ A $;
b) $ E ( \Delta ) $
is in the double commutant of the resolvent of $ A $;
and c) if $ \Delta $
is bounded, then $ E ( \Delta ) {\mathcal K} \subset {\mathcal D} ( A) $
and $ \sigma ( A \mid _ {E ( \Delta ) {\mathcal K} } ) \subset \overline \Delta \; $,
$ \sigma ( A \mid _ {( I - E ( \Delta ) ) {\mathcal K} } ) \subset \overline{ {( \mathbf R \setminus \Delta ) }}\; \cup \sigma _ {0} ( A) $.
If, in particular, $ A $
is bounded and $ [ A x , x ] \geq 0 $(
$ x \in {\mathcal K} $),
then $ c ( A) \subset \{ 0 \} $,
and one has
$$
A x = \int\limits _ {- \| A \| } ^ { {\| } A \| } \lambda E ( d \lambda ) x + N x ,
$$
for some bounded operator $ N $
such that $ N = N ^ {+} $,
$ N ^ {2} = 0 $,
$ [ N x , x ] \geq 0 $(
$ x \in {\mathcal K} $).
If the spectrum of a definitizable operator $ A $
is discrete, then the linear span of its algebraic eigen spaces is dense in $ {\mathcal K} $;
if $ A $
is compact and self-adjoint in a $ \pi _ \kappa $-
space $ {\mathcal K} $
and $ 0 \notin \sigma _ {p} ( A) $,
then there is a Riesz basis of $ {\mathcal K} $
consisting of eigen and associated vectors of $ A $(
I.S. Iokhvidov).
There is a theory of extensions of symmetric operators to self-adjoint operators and of generalized resolvents in $ \pi _ \kappa $-
spaces, and also in Krein spaces, which is similar to the Hilbert space situation. The same is true for dilation theory: Each bounded linear operator $ T $
in a Krein space $ {\mathcal K} $
has a unitary dilation $ T $
in some Krein space $ {\mathcal K} \tilde \supset {\mathcal K} $([a2]). In this context one has the following result: Let $ {\mathcal K} _ {1} $,
$ {\mathcal K} _ {2} $
be Krein spaces, $ {\mathcal D} $
a simply-connected open domain with smooth boundary such that $ 0 \in {\mathcal D} $,
$ \overline{ {\mathcal D} }\; \subset \{ {z } : {| z | < 1 } \} $,
and let $ \Theta $
be a function which is holomorphic in $ {\mathcal D} $
whose values are bounded linear operators from $ {\mathcal K} _ {1} $
to $ {\mathcal K} _ {2} $.
Then there exists a Krein space $ {\mathcal K} $
and a unitary operator
$$
U = \left (
\begin{array}{ll}
U _ {11} &U _ {12} \\
U _ {21} &U _ {22} \\
\end{array}
\right ) : {\mathcal K} \oplus {\mathcal K} _ {1} \rightarrow {\mathcal K} \oplus {\mathcal K} _ {2} ,
$$
such that
$$
\Theta ( z) = U _ {22} + z U _ {21} ( I - z U _ {11} ) ^ {-1} U _ {12} \ \
( z \in {\mathcal D} )
$$
(T.Ya. Azizov, see [a2], [a6]; here unitary means that $ U $
maps the Krein space $ {\mathcal K} \oplus {\mathcal K} _ {1} $
continuously onto the Krein space $ {\mathcal K} \oplus {\mathcal K} _ {2} $,
preserving the indefinite inner product).
Some of the first papers about Krein spaces or, more generally, spaces with indefinite inner product, were stimulated by problems of (quantum) mechanics ([a4], [a2]; see also [a18], [a17]). Operators in Krein spaces arise also in a natural way in problems in mathematical analysis. Some examples of these are: I) Consider the canonical system of differential equations $ J \dot{x} ( t) = i H ( t) x ( t) $
on $ [ 0 , \infty ) $,
where $ H ( t) $,
$ J $
are $ ( n \times n ) $
matrices, $ H ( t ) \geq 0 $,
$ J = J ^ {*} = J ^ {-1} $,
and let $ U ( t) $
be the corresponding matrizant (cf. Cauchy operator): $ J \dot{U} ( t) = i H ( t) U ( t) $,
$ U ( 0) = I _ {n} $.
Then $ U ( t) $
is $ J $-
unitary (that is, unitary with respect to the inner product defined in $ \mathbf C ^ {n} $
by the matrix $ J $,
see (a3)), and, e.g., in the stability theory for periodic equations $ ( H ( t) = H ( T + t ) ) $
the classification of the eigen values of $ U ( T) $
into those of positive or negative type plays an essential role ([a5], [a8]). II) The integral operator $ x ( \cdot ) \rightarrow \int _ {a} ^ {b} K ( \cdot , s ) x ( s ) d \sigma ( s) $,
$ \sigma $
real and of bounded variation on the interval $ [ a , b ] $,
$ K ( s , t ) = \overline{ {K ( t , s ) }}\; $(
$ s , t \in [ a , b ] $),
is self-adjoint in the Krein space $ L _ {2} ( \sigma ) $.
III) The theory of dual pairs of subspaces of a Krein space and their extensions to maximal dual pairs is related to certain questions in the theory of extensions of dissipative operators in a Hilbert space to maximal dissipative ones. Phillips started these investigations in connection with the Cauchy problem for dissipative hyperbolic and parabolic systems (see [a2], [a4] for references). IV) With the monic operator polynomial $ L ( \lambda ) = \lambda ^ {n} I + \lambda ^ {n-1} B _ {n-1} + \dots + \lambda B _ {1} + B _ {0} $,
$ B _ {j} $
bounded self-adjoint operators in some Hilbert space $ {\mathcal H} $,
one can associate the so-called companion operator
$$
A = \left (
\begin{array}{ccccc}
- B _ {n-1} &- B _ {n-2} &\dots &- B _ {1} &- B _ {0} \\
I & 0 &\dots & 0 & 0 \\
\cdot &\cdot &\dots &\cdot &\cdot \\
0 & 0 &\dots & I & 0 \\
\end{array}
\right ) ,
$$
which is self-adjoint in the Krein space $ {\mathcal K} = {\mathcal H} ^ {n} $,
$ [ x , y ] = ( G x , y ) $(
$ x , y \in {\mathcal H} ^ {n} $),
where $ ( \cdot , \cdot ) $
is the inner product in $ {\mathcal H} ^ {n} $
and
$$
G = \left (
\begin{array}{cccc}
0 & 0 &\dots & I \\
0 & 0 &{} &B _ {n-1} \\
\cdot &\cdot &{} &\cdot \\
\cdot &\cdot &{} &\cdot \\
\cdot &\cdot &{} &\cdot \\
I &B _ {n-1} &\dots &B _ {1} \\
\end{array}
\right ) .
$$
If, e.g., $ n = 2 $
and $ B _ {0} $
is compact and $ \geq 0 $,
the results about the existence of maximal non-negative invariant subspaces mentioned above imply that there exists a bounded linear operator $ Z $
in $ {\mathcal H} $
satisfying $ Z ^ {2} + B _ {1} Z + B _ {0} = 0 $,
$ Z ^ {*} Z \leq B _ {0} $
and $ \mathop{\rm Im} \sigma ( Z) \geq 0 $[a12]. In a similar way, if $ B \geq 0 $,
$ C = C ^ {*} $
and $ A $
are $ ( n \times n ) $
matrices such that $ G = \left({\begin{array}{cc} -C & A^* \\ A & B\end{array}}\right)$ has $ n $
positive and $ n $
negative eigen values, the solutions $ X $
of the matrix Riccati equation
$$
X B X + X A + A ^ {*} X - C = 0
$$
with $ ( X ^ {*} - X ) ( A + B X ) \geq 0 $
are in bijective correspondence with all maximal non-positive subspaces which are invariant under the self-adjoint
operator $ T = i \left({\begin{array}{cc} A & B \\ C & -A^*\end{array}}\right)$
in the $ 2n $-dimensional Krein space $ {\mathcal K} = \mathbf C ^ {2n} $,
equipped with the indefinite inner product (a4) (see [a8]). V) If $ L $
is a formally-symmetric regular ordinary differential operator on the interval $ [ a , b ] $
with symmetric boundary conditions at $ a $
and $ b $,
and $ r $
is a summable function on $ [ a , b ] $
which is not of constant sign (a.e.) on $ [ a , b ] $,
then the differential equation $ L y - \lambda r y = r f $
leads to a self-adjoint operator $ A $
in the Krein space $ {\mathcal K} = L _ {2,r} $
with inner product $ [ f , g ] = \int _ {a} ^ {b} f \overline{g}\; r d x $.
If $ L $
is semi-bounded from below, the operator $ A $
is definitizable. VI) Krein spaces can be associated with certain eigen value problems for ordinary differential operators containing the eigen value parameters in the boundary conditions. E.g., consider in $ L _ {2} = L _ {2} [ 0 , \infty ) $
the problem
$$
-
\frac{d ^ {2} y }{d x ^ {2} }
+
q y - \lambda y = f ,
$$
which is supposed to have a limit point at $ \infty $
and with a boundary condition $ \alpha ( \lambda ) y ( 0) + \beta ( \lambda ) y ^ \prime ( 0) = 0 $
at $ x = 0 $(
$ \alpha $,
$ \beta $
are functions which are holomorphic on some set $ D _ {\alpha , \beta } \subset \mathbf C $
and satisfying a symmetry condition). The solution of this problem can be represented as $ y = P ( A - \lambda I ) ^ {-1} f $(
$ f \in L _ {2} $),
where, in general, $ A $
is a self-adjoint operator in some Krein space $ {\mathcal K} = L _ {2} \oplus {\mathcal K} _ {1} $
and $ P $
is the orthogonal projection from $ {\mathcal K} $
onto $ L _ {2} $[a17]. VII) Certain classes of analytic functions are closely related to the theory of operators in $ \pi _ \kappa $-
spaces. This concerns, e.g., functions $ f $
which are defined and meromorphic in the upper half-plane (or the unit disc) and which are such that the kernel
$$
N _ {f} ( z , \rho ) = \
\frac{f ( z) - \overline{ {f ( \rho ) }}\; }{z - \overline \rho \; }
$$
(or
$$
\left . S _ {f} ( z , \overline \rho \; ) = \
\frac{1 - f ( z) \overline{ {f ( \rho ) }}\; }{1 - z \overline \rho \; }
\right )
$$
has $ \kappa $
negative squares (that is, for arbitrary $ n $
and $ z _ {1} \dots z _ {n} $,
the matrix $ ( N _ {f} ( z _ {i} , z _ {j} ) ) _ {1} ^ {n} $
has at most $ n $
negative eigen values and for at least one choice of $ n , z _ {1} \dots z _ {n} $
it has $ \kappa $
negative eigen values). Corresponding extrapolation or moment problems can be treated by making use of results of the theory of symmetric or isometric operators in $ \pi _ \kappa $-
spaces (see [a12], [a2]).
References
[a1] | T.Ya Azizov, I.S. Iokhvidov, "Linear operators in spaces with indefinite metric and their applications" Russian Math. Surveys , 15 (1981) pp. 438–490 Itogi Nauk. i Tekhn. Mat. Anal. , 17 (1979) pp. 113–205 |
[a2] | T.Ya Azizov, I.S. Iokhvidov, "Foundations of the theory of linear operators in spaces with indefinite metric" , Moscow (1986) (In Russian) |
[a3] | T. Ando, "Linear operators in Krein spaces" , Hokkaido Univ. (1979) |
[a4] | J. Bognár, "Indefinite inner product spaces" , Springer (1974) |
[a5] | Yu.L. Daletskii, M.G. Krein, "Stability of solutions of differential equations in Banach space" , Amer. Math. Soc. (1974) (Translated from Russian) |
[a6] | A. Dijksma, H. Langer, H.S.V. de Snoo, "Unitary colligations in Krein spaces and their role in the extension theory of isometries and symmetric linear relations in Hilbert spaces" S. Kurepa (ed.) et al. (ed.) , Foundational analysis II , Lect. notes in math. , 1247 , Springer (1987) pp. 1–42 |
[a7] | A. Dijksma, H. Langer, H.S.V. de Snoo, "Symmetric Sturm–Liouville operators with eigenvalues depending boundary conditions" , Oscillation, Bifurcations and Chaos , CMS Conf. Proc. , 8 , Amer. Math. Soc. (1987) pp. 87–116 |
[a8] | I. [I. Gokhberg] Gohberg, P. Lancaster, L. Rodman, "Matrices and indefinite scalar products" , Birkhäuser (1983) |
[a9] | I.S. [I.S. Iokhvidov] Iohidov, M.G. Krein, H. Langer, "Introduction to the spectral theory of operators in spaces with an indefinite metric" , Akademie Verlag (1982) |
[a10] | V.I. Istraţescu, "Inner product spaces. Theory and applications" , Reidel (1987) |
[a11] | M.G. Krein, "Introduction to the geometry of indefinite $J$-spaces and the theory of operators in these spaces" , Second Math. Summer School , 1 , Kiev (1965) pp. 15–92 (In Russian) |
[a12] | M.G. Krein, H. Langer, "Ueber einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume $\pi _ { \kappa}$ zusammenhängen, I: Einige Funktionenklassen und ihre Darstellungen" Math. Nachr. , 77 (1977) pp. 187–236 |
[a13] | H. Langer, "Spectral functions of definitizable operators in Krein spaces" D. Butković (ed.) et al. (ed.) , Functional analysis , Lect. notes in math. , 948 , Springer (1982) pp. 1–46 |
[a14] | H. Langer, "Invariante Teilräume definisierbarer $J$-selbstadjungierter Operatoren" Ann. Acad. Sci. Fenn A. I , 475 (1971) |
[a15] | J. Milnor, D. Husemoller, "Symmetric bilinear forms" , Springer (1973) |
[a16] | R.S. Phillips, "The extensions of dual subspaces invariant under an algebra" , Proc. Internat. Symp. Linear Spaces (Jerusalem, 1960) , Pergamon (1961) pp. 366–398 |
[a17] | L. Bracci, G. Morchio, F. Strocchi, "Wigner's theorem on symmetries in indefinite metric spaces" Comm. Math. Phys. , 41 (1975) pp. 289–299 |
[a18] | K.L. Nagy, "State vector spaces with indefinite metric in quantum field theory" , Noordhoff (1966) |
[a19] | M.A. Naimark, R.S. Ismagilov, "Representations of groups and algebras in a space with indefinite metric" Itogi Nauk. i Tekhn. Mat. Anal. (1969) pp. 73–105 (In Russian) |
[a20] | M.G. Krein, H. Langer, "On some mathematical principles in the linear theory of damped oscillations of continua" Integral Equations, Operator Theory , 1 (1978) pp. 364–399; 539–566 Proc. Internat. Symp. Appl. Theory of Functions in Continuum Mechanics, Tbilizi , 2 (1963) pp. 283–322 |