Difference between revisions of "Rectifying plane"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (typos) |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0801401.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/R080/R.0800140 Rectifying plane | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The plane of the Frénet frame (cf. [[Frénet trihedron|Frénet trihedron]]) of a given point $ A $ | |
+ | on a curve $ \mathbf r = \mathbf r ( t) $( | ||
+ | cf. [[Line (curve)|Line (curve)]]) which is spanned by the tangent (cf. [[Tangent line|Tangent line]]) $ \mathbf t $ | ||
+ | and the [[Binormal|binormal]] $ \mathbf b $ | ||
+ | to the curve at this point. The equation of the rectifying plane can be written in the form | ||
− | + | $$ | |
+ | \def\p{\prime}\def\pp{ {\p\p} } | ||
+ | \left| | ||
+ | \begin{matrix} | ||
+ | X - x(A) & Y - y(A) & Z - z(A) \\ | ||
+ | x^\p(A) & y^\p(A) & z^\p(A) \\ | ||
+ | \left| | ||
+ | \begin{matrix} | ||
+ | y^\p & z^\p \\ | ||
+ | y^\pp & z^\pp\\ | ||
+ | \end{matrix} | ||
+ | \right| & | ||
+ | \left| | ||
+ | \begin{matrix} | ||
+ | z^\p & x^\p \\ | ||
+ | z^\pp & x^\pp\\ | ||
+ | \end{matrix} | ||
+ | \right| & | ||
+ | \left| | ||
+ | \begin{matrix} | ||
+ | x^\p & y^\p \\ | ||
+ | x^\pp & y^\pp\\ | ||
+ | \end{matrix} | ||
+ | \right| | ||
+ | \end{matrix} | ||
+ | \right| | ||
+ | = 0, | ||
+ | $$ | ||
− | + | or | |
+ | $$ | ||
+ | ( \mathbf R - \mathbf r ) \mathbf r ^ \prime [ \mathbf r ^ \prime , \mathbf r | ||
+ | ^ {\prime\prime} ] = 0, | ||
+ | $$ | ||
+ | where $ \mathbf r ( t) = \mathbf r ( x( t), y( t), z( t)) $ | ||
+ | is the equation of the curve. | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''2''' , Publish or Perish (1970) pp. 1–5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Spivak, "A comprehensive introduction to differential geometry" , '''2''' , Publish or Perish (1970) pp. 1–5</TD></TR></table> |
Latest revision as of 21:22, 7 June 2020
The plane of the Frénet frame (cf. Frénet trihedron) of a given point $ A $
on a curve $ \mathbf r = \mathbf r ( t) $(
cf. Line (curve)) which is spanned by the tangent (cf. Tangent line) $ \mathbf t $
and the binormal $ \mathbf b $
to the curve at this point. The equation of the rectifying plane can be written in the form
$$ \def\p{\prime}\def\pp{ {\p\p} } \left| \begin{matrix} X - x(A) & Y - y(A) & Z - z(A) \\ x^\p(A) & y^\p(A) & z^\p(A) \\ \left| \begin{matrix} y^\p & z^\p \\ y^\pp & z^\pp\\ \end{matrix} \right| & \left| \begin{matrix} z^\p & x^\p \\ z^\pp & x^\pp\\ \end{matrix} \right| & \left| \begin{matrix} x^\p & y^\p \\ x^\pp & y^\pp\\ \end{matrix} \right| \end{matrix} \right| = 0, $$
or
$$ ( \mathbf R - \mathbf r ) \mathbf r ^ \prime [ \mathbf r ^ \prime , \mathbf r ^ {\prime\prime} ] = 0, $$
where $ \mathbf r ( t) = \mathbf r ( x( t), y( t), z( t)) $ is the equation of the curve.
Comments
References
[a1] | M. Spivak, "A comprehensive introduction to differential geometry" , 2 , Publish or Perish (1970) pp. 1–5 |
Rectifying plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rectifying_plane&oldid=18907