Namespaces
Variants
Actions

Difference between revisions of "Formal language"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
<!--
 +
f0408301.png
 +
$#A+1 = 45 n = 0
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/F040/F.0400830 Formal language
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in mathematical linguistics''
 
''in mathematical linguistics''
  
An arbitrary set of chains (that is, words, cf. [[Word|Word]]) over some (finite or infinite) [[Alphabet|alphabet]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408301.png" /> (sometimes also called a dictionary), that is, a set of expressions of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408302.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408303.png" />; the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408304.png" />, usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408305.png" />, is the length of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408306.png" />. One also considers the empty chain, denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408307.png" />; one sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408308.png" />. One often speaks of a language over the alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f0408309.png" />, omitting the word  "formal" . In [[Mathematical linguistics|mathematical linguistics]] and the theory of automata (cf. [[Automata, theory of|Automata, theory of]]) one considers various effective ways of specifying a formal language, principally by means of formal grammars (cf. [[Grammar, formal|Grammar, formal]]) and automata of various types, which can, in the majority of cases, be described as modifications of non-deterministic Turing machines (cf. [[Turing machine|Turing machine]]), often multi-tape, with some restrictions on the ways the machine works on each tape.
+
An arbitrary set of chains (that is, words, cf. [[Word|Word]]) over some (finite or infinite) [[Alphabet|alphabet]] $  V $(
 +
sometimes also called a dictionary), that is, a set of expressions of the form $  \omega = a _ {1} \dots a _ {k} $,  
 +
where $  a _ {1} \dots a _ {k} \in V $;  
 +
the number $  k $,  
 +
usually denoted by $  | \omega | $,  
 +
is the length of the chain $  \omega $.  
 +
One also considers the empty chain, denoted by $  \Lambda $;  
 +
one sets $  | \Lambda | = 0 $.  
 +
One often speaks of a language over the alphabet $  V $,  
 +
omitting the word  "formal" . In [[Mathematical linguistics|mathematical linguistics]] and the theory of automata (cf. [[Automata, theory of|Automata, theory of]]) one considers various effective ways of specifying a formal language, principally by means of formal grammars (cf. [[Grammar, formal|Grammar, formal]]) and automata of various types, which can, in the majority of cases, be described as modifications of non-deterministic Turing machines (cf. [[Turing machine|Turing machine]]), often multi-tape, with some restrictions on the ways the machine works on each tape.
  
 
==Operations on formal languages.==
 
==Operations on formal languages.==
In addition to the usual set-theoretic operations on formal languages, one carries out: multiplication (or direct multiplication, or concatenation):
+
In addition to the usual set-theoretic operations on formal languages, one carries out: multiplication (or direct multiplication, or [[concatenation]]):
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083010.png" /></td> </tr></table>
+
$$
 +
L _ {1} L _ {2}  = \
 +
\{ {xy } : {x \in L _ {1} , y \in L _ {2} } \}
 +
;
 +
$$
  
 
left division:
 
left division:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083011.png" /></td> </tr></table>
+
$$
 +
L _ {2} \setminus  L _ {1}  = \
 +
\{ {x } : {\exists y, z  ( y \in L _ {1} \& z \in L _ {2} \& y = zx) } \}
 +
;
 +
$$
  
right division <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083012.png" /> is defined by analogy with left division; iteration:
+
right division $  L _ {1} /L _ {2} $
 +
is defined by analogy with left division; iteration:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083013.png" /></td> </tr></table>
+
$$
 +
L  ^ {*}  = L  ^ {0} \cup L  ^ {1} \cup \dots ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083014.png" /> denotes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083015.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083016.png" /> (in particular, the set of all chains in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083017.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083018.png" />); truncated iteration:
+
where $  L  ^ {0} $
 +
denotes $  \{ \Lambda \} $
 +
and $  L ^ {n + 1 } = L  ^ {n} L $(
 +
in particular, the set of all chains in $  V $
 +
is $  V  ^ {*} $);  
 +
truncated iteration:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083019.png" /></td> </tr></table>
+
$$
 +
L  ^ {+}  = L  ^ {1} \cup L  ^ {2} \cup \dots ;
 +
$$
  
and substitution: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083020.png" /> is a language over the finite alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083022.png" /> are arbitrary languages, then
+
and substitution: If $  L $
 +
is a language over the finite alphabet $  \{ a _ {1} \dots a _ {n} \} $
 +
and $  L _ {1} \dots L _ {n} $
 +
are arbitrary languages, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083023.png" /></td> </tr></table>
+
$$
 +
S ( L; a _ {1} \dots a _ {n}  \mid  L _ {1} \dots L _ {n} ) =
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083024.png" /></td> </tr></table>
+
$$
 +
= \
 +
\{ x _ {i _ {1}  } \dots x _ {i _ {k}  } : \
 +
a _ {i _ {1}  } \dots a _ {i _ {k}  } \in L \&
 +
x _ {i _ {1}  } \in L _ {i _ {1}  } \& \dots \&
 +
x _ {i _ {k}  } \in L _ {i _ {k}  } \} ;
 +
$$
  
if each of the languages <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083026.png" />, consists of one chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083027.png" />, a substitution is called a [[Homomorphism|homomorphism]]; if all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083028.png" /> are non-empty, one speaks of an unabbreviated homomorphism. If the language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083029.png" /> consists of one chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083030.png" />, then instead of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083032.png" />, etc., one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083034.png" />, etc., respectively.
+
if each of the languages $  L _ {i} $,  
 +
$  i = 1 \dots n $,  
 +
consists of one chain $  z _ {i} $,  
 +
a substitution is called a [[Homomorphism|homomorphism]]; if all the $  z _ {i} $
 +
are non-empty, one speaks of an unabbreviated homomorphism. If the language $  \{ x \} $
 +
consists of one chain $  x $,  
 +
then instead of $  \{ x \} L $,  
 +
$  \{ x \} \setminus  L $,  
 +
etc., one writes $  xL $,  
 +
$  x \setminus  L $,  
 +
etc., respectively.
  
A variety of languages is an ordered pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083035.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083036.png" />, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083037.png" /> is taken for granted), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083038.png" /> is an infinite alphabet and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083039.png" /> is a class of languages such that: 1) for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083040.png" /> there is a finite alphabet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083041.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083042.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083043.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083044.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040830/f04083045.png" /> is closed relative to union, multiplication, intersection with regular sets, truncated iteration, unabbreviated homomorphisms, and inverses of arbitrary homomorphisms. A variety that is closed relative to arbitrary homomorphisms is called complete.
+
A variety of languages is an ordered pair $  ( {\mathcal E} , {\mathcal L} ) $(
 +
or $  {\mathcal L} $,  
 +
if $  {\mathcal E} $
 +
is taken for granted), where $  {\mathcal E} $
 +
is an infinite alphabet and $  {\mathcal L} $
 +
is a class of languages such that: 1) for every $  L \in {\mathcal L} $
 +
there is a finite alphabet $  \Sigma \subset  {\mathcal E} $
 +
such that $  L \subset  \Sigma  ^ {*} $;  
 +
2) $  L \neq \emptyset $
 +
for some $  L \in {\mathcal L} $;  
 +
and 3) $  {\mathcal L} $
 +
is closed relative to union, multiplication, intersection with regular sets, truncated iteration, unabbreviated homomorphisms, and inverses of arbitrary homomorphisms. A variety that is closed relative to arbitrary homomorphisms is called complete.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Gladkii,  "Formal grammars and languages" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Ginsburg,  S. Greibach,  Y. Hopcroft,  "Studies in abstract families of languages"  ''Mem. Amer. Math. Soc.'' , '''87'''  (1969)  pp. 1–32</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Gladkii,  "Formal grammars and languages" , Moscow  (1973)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Ginsburg,  S. Greibach,  Y. Hopcroft,  "Studies in abstract families of languages"  ''Mem. Amer. Math. Soc.'' , '''87'''  (1969)  pp. 1–32</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
For more details see [[Formal languages and automata|Formal languages and automata]].
 
For more details see [[Formal languages and automata|Formal languages and automata]].

Latest revision as of 19:39, 5 June 2020


in mathematical linguistics

An arbitrary set of chains (that is, words, cf. Word) over some (finite or infinite) alphabet $ V $( sometimes also called a dictionary), that is, a set of expressions of the form $ \omega = a _ {1} \dots a _ {k} $, where $ a _ {1} \dots a _ {k} \in V $; the number $ k $, usually denoted by $ | \omega | $, is the length of the chain $ \omega $. One also considers the empty chain, denoted by $ \Lambda $; one sets $ | \Lambda | = 0 $. One often speaks of a language over the alphabet $ V $, omitting the word "formal" . In mathematical linguistics and the theory of automata (cf. Automata, theory of) one considers various effective ways of specifying a formal language, principally by means of formal grammars (cf. Grammar, formal) and automata of various types, which can, in the majority of cases, be described as modifications of non-deterministic Turing machines (cf. Turing machine), often multi-tape, with some restrictions on the ways the machine works on each tape.

Operations on formal languages.

In addition to the usual set-theoretic operations on formal languages, one carries out: multiplication (or direct multiplication, or concatenation):

$$ L _ {1} L _ {2} = \ \{ {xy } : {x \in L _ {1} , y \in L _ {2} } \} ; $$

left division:

$$ L _ {2} \setminus L _ {1} = \ \{ {x } : {\exists y, z ( y \in L _ {1} \& z \in L _ {2} \& y = zx) } \} ; $$

right division $ L _ {1} /L _ {2} $ is defined by analogy with left division; iteration:

$$ L ^ {*} = L ^ {0} \cup L ^ {1} \cup \dots , $$

where $ L ^ {0} $ denotes $ \{ \Lambda \} $ and $ L ^ {n + 1 } = L ^ {n} L $( in particular, the set of all chains in $ V $ is $ V ^ {*} $); truncated iteration:

$$ L ^ {+} = L ^ {1} \cup L ^ {2} \cup \dots ; $$

and substitution: If $ L $ is a language over the finite alphabet $ \{ a _ {1} \dots a _ {n} \} $ and $ L _ {1} \dots L _ {n} $ are arbitrary languages, then

$$ S ( L; a _ {1} \dots a _ {n} \mid L _ {1} \dots L _ {n} ) = $$

$$ = \ \{ x _ {i _ {1} } \dots x _ {i _ {k} } : \ a _ {i _ {1} } \dots a _ {i _ {k} } \in L \& x _ {i _ {1} } \in L _ {i _ {1} } \& \dots \& x _ {i _ {k} } \in L _ {i _ {k} } \} ; $$

if each of the languages $ L _ {i} $, $ i = 1 \dots n $, consists of one chain $ z _ {i} $, a substitution is called a homomorphism; if all the $ z _ {i} $ are non-empty, one speaks of an unabbreviated homomorphism. If the language $ \{ x \} $ consists of one chain $ x $, then instead of $ \{ x \} L $, $ \{ x \} \setminus L $, etc., one writes $ xL $, $ x \setminus L $, etc., respectively.

A variety of languages is an ordered pair $ ( {\mathcal E} , {\mathcal L} ) $( or $ {\mathcal L} $, if $ {\mathcal E} $ is taken for granted), where $ {\mathcal E} $ is an infinite alphabet and $ {\mathcal L} $ is a class of languages such that: 1) for every $ L \in {\mathcal L} $ there is a finite alphabet $ \Sigma \subset {\mathcal E} $ such that $ L \subset \Sigma ^ {*} $; 2) $ L \neq \emptyset $ for some $ L \in {\mathcal L} $; and 3) $ {\mathcal L} $ is closed relative to union, multiplication, intersection with regular sets, truncated iteration, unabbreviated homomorphisms, and inverses of arbitrary homomorphisms. A variety that is closed relative to arbitrary homomorphisms is called complete.

References

[1] A.V. Gladkii, "Formal grammars and languages" , Moscow (1973) (In Russian)
[2] S. Ginsburg, S. Greibach, Y. Hopcroft, "Studies in abstract families of languages" Mem. Amer. Math. Soc. , 87 (1969) pp. 1–32

Comments

For more details see Formal languages and automata.

How to Cite This Entry:
Formal language. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_language&oldid=18696
This article was adapted from an original article by A.V. Gladkii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article