Namespaces
Variants
Actions

Difference between revisions of "Colombeau generalized function algebras"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (latex details)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301501.png" /> be an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301502.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301503.png" /> be the algebra of compactly supported smooth functions. In the original definition, J.F. Colombeau [[#References|[a2]]] started from the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301504.png" /> of infinitely Silva-differentiable mappings from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301505.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301506.png" />. The space of distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301507.png" /> is just the subspace of linear mappings <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301508.png" />. Let
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301509.png" /></td> </tr></table>
+
Out of 77 formulas, 75 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|part}}
 +
Let $\Omega$ be an open subset of ${\bf R} ^ { n }$, and let $\mathcal{D} ( \Omega )$ be the algebra of compactly supported smooth functions. In the original definition, J.F. Colombeau [[#References|[a2]]] started from the space $\mathcal{C} ^ { \infty } ( \mathcal{D} ( \Omega ) )$ of infinitely Silva-differentiable mappings from $\mathcal{D} ( \Omega )$ into $\mathbf{C}$. The space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ is just the subspace of linear mappings $\mathcal{D} ( \Omega ) \rightarrow \mathbf{C}$. Let
 +
 
 +
<table class="eq" style="width:100%;"> <tr><td style="width:94%;text-align:center;" valign="top"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c1301509.png"/></td> </tr></table>
  
 
and let
 
and let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015010.png" /></td> </tr></table>
+
\begin{equation*} \varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right). \end{equation*}
  
The subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015011.png" /> is defined by those members <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015012.png" /> such that for all compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015013.png" /> and for all multi-indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015014.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015015.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015016.png" />, the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015017.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015018.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015019.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015020.png" />. The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015021.png" /> is defined by those members <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015022.png" /> such that for all compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015023.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015024.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015025.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015027.png" />, the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015028.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015029.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015030.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015031.png" />. The Colombeau generalized function algebra is the factor algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015032.png" />. It contains the space of distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015033.png" /> with derivatives faithfully extended (cf. also [[Generalized function, derivative of a|Generalized function, derivative of a]]). The asymptotic decay property expressed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015034.png" /> together with an argument using Taylor expansion shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015035.png" /> is a faithful subalgebra.
+
The subalgebra $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) )$ is defined by those members $R$ such that for all compact subsets $K \subset \Omega$ and for all multi-indices $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N \in \mathbf{N}$ such that for all $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$, the supremum of $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$. The ideal $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ is defined by those members $R$ such that for all compact subsets $K \subset \Omega$ and all $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N \in \mathbf{N}$ such that for all $q \geq N$ and $\varphi \in \mathcal{A} _ { q } ( \mathbf{R} ^ { n } )$, the supremum of $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q - N } )$ as $\varepsilon \rightarrow 0$. The Colombeau generalized function algebra is the factor algebra $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) ) / \mathcal{N} ( \mathcal{D} ( \Omega ) )$. It contains the space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ with derivatives faithfully extended (cf. also [[Generalized function, derivative of a|Generalized function, derivative of a]]). The asymptotic decay property expressed in $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ together with an argument using Taylor expansion shows that $\mathcal{C} ^ { \infty } ( \Omega )$ is a faithful subalgebra.
  
Later, Colombeau [[#References|[a3]]], [[#References|[a4]]] replaced the construction by a reduced power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015036.png" /> with index set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015037.png" />: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015038.png" /> be the algebra of all nets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015039.png" /> such that for all compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015040.png" /> and all multi-indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015041.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015042.png" /> such that the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015043.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015044.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015045.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015046.png" /> (cf. also [[Net (directed set)|Net (directed set)]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015047.png" /> be the ideal therein given by those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015048.png" /> such that for all compact subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015049.png" />, all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015050.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015051.png" />, the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015052.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015053.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015054.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015055.png" />. Then set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015056.png" />. There exist versions with the infinite-order [[Sobolev space|Sobolev space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015057.png" /> in the place of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015059.png" />, or with other topological algebras.
+
Later, Colombeau [[#References|[a3]]], [[#References|[a4]]] replaced the construction by a reduced power of $\mathcal{C} ^ { \infty } ( \Omega )$ with index set $\Lambda = ( 0 , \infty )$: Let ${ \cal E} _ { M } ( \Omega )$ be the algebra of all nets $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset \mathcal{C} ^ { \infty } ( \Omega )$ such that for all compact subsets $K \subset \Omega$ and all multi-indices $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N > 0$ such that the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$ (cf. also [[Net (directed set)|Net (directed set)]]). Let $\mathcal{N} ( \Omega )$ be the ideal therein given by those $( u _ { \varepsilon } ) _ { \varepsilon > 0 }$ such that for all compact subsets $K \subset \Omega$, all $\alpha \in {\bf N} _ { 0 } ^ { n }$ and all $q \geq 0$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q } )$ as $\varepsilon \rightarrow 0$. Then set $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } ( \Omega ) / \mathcal{N} ( \Omega )$. There exist versions with the infinite-order [[Sobolev space|Sobolev space]] $W ^ { \infty , p } ( \Omega )$ in the place of $\mathcal{C} ^ { \infty } ( \Omega )$, $1 \leq p \leq \infty$, or with other topological algebras.
  
It is possible to enlarge the class of mollifiers (hence the index set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015060.png" /> in the reduced power construction) to produce a version for which smooth coordinate changes commute with the imbedding of distributions. This way Colombeau generalized functions can be defined intrinsically on manifolds. Generalized stochastic processes with paths in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015061.png" /> have been introduced as well.
+
It is possible to enlarge the class of mollifiers (hence the index set $\Lambda$ in the reduced power construction) to produce a version for which smooth coordinate changes commute with the imbedding of distributions. This way Colombeau generalized functions can be defined intrinsically on manifolds. Generalized stochastic processes with paths in $\mathcal{G} ( \Omega )$ have been introduced as well.
  
The subalgebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015062.png" /> is defined by interchanging quantifiers: For all compact sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015063.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015064.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015065.png" />, the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015066.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015067.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015068.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015069.png" />. One has that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015070.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015071.png" /> plays the same role in regularity theory here as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015072.png" /> does in distribution theory (for example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015073.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015074.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c130/c130150/c13015076.png" /> denotes the [[Laplace operator|Laplace operator]]).
+
The subalgebra $\mathcal{G} ^ { \infty } ( \Omega )$ is defined by interchanging quantifiers: For all compact sets $K \subset \Omega$ there is an $N > 0$ such that for all $\alpha \in {\bf N} _ { 0 } ^ { n }$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ on $K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$. One has that $\mathcal{G} ^ { \infty } ( \Omega ) \cap \mathcal{D} ^ { \prime } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega )$, and $\mathcal{G} ^ { \infty } ( \Omega )$ plays the same role in regularity theory here as $C ^ { \infty } ( \Omega )$ does in distribution theory (for example, $u \in \mathcal{G} ( \Omega )$ and $\Delta u \in \mathcal{G} ^ { \infty } ( \Omega )$ implies $u \in \mathcal{G} ^ { \infty } ( \Omega )$, where $\Delta$ denotes the [[Laplace operator|Laplace operator]]).
  
 
For applications in a variety of fields of non-linear analysis and physics, see [[#References|[a1]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]].
 
For applications in a variety of fields of non-linear analysis and physics, see [[#References|[a1]]], [[#References|[a4]]], [[#References|[a5]]], [[#References|[a6]]], [[#References|[a7]]].
  
See also [[Generalized function algebras|Generalized function algebras]].
+
See also [[Generalized function algebras]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.A. Biagioni,  "A nonlinear theory of generalized functions" , Springer  (1990)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.F. Colombeau,  "New generalized functions and multiplication of distributions" , North-Holland  (1984)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.F. Colombeau,  "Elementary introduction to new generalized functions" , North-Holland  (1985)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  J.F. Colombeau,  "Multiplication of distributions. A tool in mathematics, numerical engineering and theoretical physics" , Springer  (1992)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  "Nonlinear theory of generalized functions"  M. Grosser (ed.)  G. Hörmann (ed.)  M. Kunzinger (ed.)  M. Oberguggenberger (ed.) , Chapman and Hall/CRC  (1999)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  M. Nedeljkov,  S. Pilipović,  D. Scarpalézos,  "The linear theory of Colombeau generalized functions" , Longman  (1998)</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M. Oberguggenberger,  "Multiplication of distributions and applications to partial differential equations" , Longman  (1992)</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  H.A. Biagioni,  "A nonlinear theory of generalized functions" , Springer  (1990)</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  J.F. Colombeau,  "New generalized functions and multiplication of distributions" , North-Holland  (1984)</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  J.F. Colombeau,  "Elementary introduction to new generalized functions" , North-Holland  (1985)</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  J.F. Colombeau,  "Multiplication of distributions. A tool in mathematics, numerical engineering and theoretical physics" , Springer  (1992)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  "Nonlinear theory of generalized functions"  M. Grosser (ed.)  G. Hörmann (ed.)  M. Kunzinger (ed.)  M. Oberguggenberger (ed.) , Chapman and Hall/CRC  (1999)</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  M. Nedeljkov,  S. Pilipović,  D. Scarpalézos,  "The linear theory of Colombeau generalized functions" , Longman  (1998)</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  M. Oberguggenberger,  "Multiplication of distributions and applications to partial differential equations" , Longman  (1992)</td></tr>
 +
</table>

Latest revision as of 20:13, 4 February 2024

Let $\Omega$ be an open subset of ${\bf R} ^ { n }$, and let $\mathcal{D} ( \Omega )$ be the algebra of compactly supported smooth functions. In the original definition, J.F. Colombeau [a2] started from the space $\mathcal{C} ^ { \infty } ( \mathcal{D} ( \Omega ) )$ of infinitely Silva-differentiable mappings from $\mathcal{D} ( \Omega )$ into $\mathbf{C}$. The space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ is just the subspace of linear mappings $\mathcal{D} ( \Omega ) \rightarrow \mathbf{C}$. Let

and let

\begin{equation*} \varphi _ { \varepsilon , x } ( y ) = \varepsilon ^ { - n } \varphi \left( \frac { y - x } { \varepsilon } \right). \end{equation*}

The subalgebra $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) )$ is defined by those members $R$ such that for all compact subsets $K \subset \Omega$ and for all multi-indices $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N \in \mathbf{N}$ such that for all $\varphi \in \mathcal{A} _ { N } ( \mathbf{R} ^ { n } )$, the supremum of $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$. The ideal $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ is defined by those members $R$ such that for all compact subsets $K \subset \Omega$ and all $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N \in \mathbf{N}$ such that for all $q \geq N$ and $\varphi \in \mathcal{A} _ { q } ( \mathbf{R} ^ { n } )$, the supremum of $| \partial ^ { \alpha } R ( \varphi _ { \varepsilon , x } ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q - N } )$ as $\varepsilon \rightarrow 0$. The Colombeau generalized function algebra is the factor algebra $\mathcal{E} _ { M } ( \mathcal{D} ( \Omega ) ) / \mathcal{N} ( \mathcal{D} ( \Omega ) )$. It contains the space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ with derivatives faithfully extended (cf. also Generalized function, derivative of a). The asymptotic decay property expressed in $\mathcal{N} ( \mathcal{D} ( \Omega ) )$ together with an argument using Taylor expansion shows that $\mathcal{C} ^ { \infty } ( \Omega )$ is a faithful subalgebra.

Later, Colombeau [a3], [a4] replaced the construction by a reduced power of $\mathcal{C} ^ { \infty } ( \Omega )$ with index set $\Lambda = ( 0 , \infty )$: Let ${ \cal E} _ { M } ( \Omega )$ be the algebra of all nets $( u _ { \varepsilon } ) _ { \varepsilon > 0 } \subset \mathcal{C} ^ { \infty } ( \Omega )$ such that for all compact subsets $K \subset \Omega$ and all multi-indices $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N > 0$ such that the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$ (cf. also Net (directed set)). Let $\mathcal{N} ( \Omega )$ be the ideal therein given by those $( u _ { \varepsilon } ) _ { \varepsilon > 0 }$ such that for all compact subsets $K \subset \Omega$, all $\alpha \in {\bf N} _ { 0 } ^ { n }$ and all $q \geq 0$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q } )$ as $\varepsilon \rightarrow 0$. Then set $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } ( \Omega ) / \mathcal{N} ( \Omega )$. There exist versions with the infinite-order Sobolev space $W ^ { \infty , p } ( \Omega )$ in the place of $\mathcal{C} ^ { \infty } ( \Omega )$, $1 \leq p \leq \infty$, or with other topological algebras.

It is possible to enlarge the class of mollifiers (hence the index set $\Lambda$ in the reduced power construction) to produce a version for which smooth coordinate changes commute with the imbedding of distributions. This way Colombeau generalized functions can be defined intrinsically on manifolds. Generalized stochastic processes with paths in $\mathcal{G} ( \Omega )$ have been introduced as well.

The subalgebra $\mathcal{G} ^ { \infty } ( \Omega )$ is defined by interchanging quantifiers: For all compact sets $K \subset \Omega$ there is an $N > 0$ such that for all $\alpha \in {\bf N} _ { 0 } ^ { n }$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ on $K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0$. One has that $\mathcal{G} ^ { \infty } ( \Omega ) \cap \mathcal{D} ^ { \prime } ( \Omega ) = \mathcal{C} ^ { \infty } ( \Omega )$, and $\mathcal{G} ^ { \infty } ( \Omega )$ plays the same role in regularity theory here as $C ^ { \infty } ( \Omega )$ does in distribution theory (for example, $u \in \mathcal{G} ( \Omega )$ and $\Delta u \in \mathcal{G} ^ { \infty } ( \Omega )$ implies $u \in \mathcal{G} ^ { \infty } ( \Omega )$, where $\Delta$ denotes the Laplace operator).

For applications in a variety of fields of non-linear analysis and physics, see [a1], [a4], [a5], [a6], [a7].

See also Generalized function algebras.

References

[a1] H.A. Biagioni, "A nonlinear theory of generalized functions" , Springer (1990)
[a2] J.F. Colombeau, "New generalized functions and multiplication of distributions" , North-Holland (1984)
[a3] J.F. Colombeau, "Elementary introduction to new generalized functions" , North-Holland (1985)
[a4] J.F. Colombeau, "Multiplication of distributions. A tool in mathematics, numerical engineering and theoretical physics" , Springer (1992)
[a5] "Nonlinear theory of generalized functions" M. Grosser (ed.) G. Hörmann (ed.) M. Kunzinger (ed.) M. Oberguggenberger (ed.) , Chapman and Hall/CRC (1999)
[a6] M. Nedeljkov, S. Pilipović, D. Scarpalézos, "The linear theory of Colombeau generalized functions" , Longman (1998)
[a7] M. Oberguggenberger, "Multiplication of distributions and applications to partial differential equations" , Longman (1992)
How to Cite This Entry:
Colombeau generalized function algebras. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Colombeau_generalized_function_algebras&oldid=17873
This article was adapted from an original article by Michael Oberguggenberger (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article