|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Numerical characteristics (parameters) which are one and the same for all conformally-equivalent Riemann surfaces, and in their totality characterize the conformal equivalence class of a given Riemann surface. Here two Riemann surfaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644901.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644902.png" /> are called conformally equivalent if there is a conformal mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644903.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644904.png" />. For example, the conformal classes of compact Riemann surfaces of topological genus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644905.png" /> are characterized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644906.png" /> real moduli; a Riemann surface of torus type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644907.png" /> is characterized by 2 moduli; an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644908.png" />-connected plane domain, considered as a Riemann surface with boundary, is characterized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m0644909.png" /> moduli for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449010.png" />. About the structure of the moduli space of a Riemann surface see [[Riemann surfaces, conformal classes of|Riemann surfaces, conformal classes of]].
| + | <!-- |
| + | m0644901.png |
| + | $#A+1 = 55 n = 0 |
| + | $#C+1 = 55 : ~/encyclopedia/old_files/data/M064/M.0604490 Moduli of a Riemann surface |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A necessary condition for the conformal equivalence of two plane domains is that they have the same connectivity. According to the [[Riemann theorem|Riemann theorem]], all simply-connected domains with more than one boundary point are conformally equivalent to each other; each such domain can be conformally mapped onto one canonical domain, usually taken to be the unit disc. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449011.png" />-connected domains, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449012.png" />, a precise equivalent of this Riemann mapping theorem does not exist: It is impossible to give any fixed domain whatever onto which it is possible to univalently and conformally map all domains of a given order of connectivity. This has led to a more flexible definition of a canonical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449013.png" />-connected domain, which reflects the general geometric structure of this domain, but does not fix its moduli (see [[Conformal mapping|Conformal mapping]]).
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Each doubly-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449014.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449015.png" />-plane with non-degenerate boundary continua can be conformally mapped onto some circular annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449017.png" />. The ratio <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449018.png" /> of the radii of the boundary circles of this annulus is a conformal invariant and is called the modulus of the doubly-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449019.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449020.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449021.png" />-connected domain, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449022.png" />, with a non-degenerate boundary. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449023.png" /> can be conformally mapped onto some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449024.png" />-connected circular domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449025.png" />, which is a circular annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449026.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449027.png" /> discs with bounding circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449029.png" />, removed; the circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449031.png" />, lie in the annulus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449032.png" /> and pairwise do not have points in common. Here it can be assumed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449034.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449035.png" /> depends on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449036.png" /> real parameters: the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449037.png" /> numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449038.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449039.png" /> real parameters defining the centres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449040.png" /> of the circles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449042.png" />. These <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449043.png" /> real parameters can be taken as moduli of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449045.png" />-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449046.png" /> in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449047.png" />.
| + | Numerical characteristics (parameters) which are one and the same for all conformally-equivalent Riemann surfaces, and in their totality characterize the conformal equivalence class of a given Riemann surface. Here two Riemann surfaces $ R _ {1} $ |
| + | and $ R _ {2} $ |
| + | are called conformally equivalent if there is a conformal mapping from $ R _ {1} $ |
| + | onto $ R _ {2} $. |
| + | For example, the conformal classes of compact Riemann surfaces of topological genus $ g > 1 $ |
| + | are characterized by $ 6 g - 6 $ |
| + | real moduli; a Riemann surface of torus type $ ( g = 1 ) $ |
| + | is characterized by 2 moduli; an $ n $- |
| + | connected plane domain, considered as a Riemann surface with boundary, is characterized by $ 3 n - 6 $ |
| + | moduli for $ n \geq 3 $. |
| + | About the structure of the moduli space of a Riemann surface see [[Riemann surfaces, conformal classes of|Riemann surfaces, conformal classes of]]. |
| | | |
− | As moduli of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449048.png" />-connected domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449049.png" /> it is also possible to take any other <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449050.png" /> real parameters (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449051.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449052.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449053.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449054.png" />) which determine a conformal mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449055.png" /> onto some canonical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064490/m06449056.png" />-connected domain of another shape.
| + | A necessary condition for the conformal equivalence of two plane domains is that they have the same connectivity. According to the [[Riemann theorem|Riemann theorem]], all simply-connected domains with more than one boundary point are conformally equivalent to each other; each such domain can be conformally mapped onto one canonical domain, usually taken to be the unit disc. For $ n $- |
| + | connected domains, $ n \geq 2 $, |
| + | a precise equivalent of this Riemann mapping theorem does not exist: It is impossible to give any fixed domain whatever onto which it is possible to univalently and conformally map all domains of a given order of connectivity. This has led to a more flexible definition of a canonical $ n $- |
| + | connected domain, which reflects the general geometric structure of this domain, but does not fix its moduli (see [[Conformal mapping|Conformal mapping]]). |
| + | |
| + | Each doubly-connected domain $ D $ |
| + | of the $ z $- |
| + | plane with non-degenerate boundary continua can be conformally mapped onto some circular annulus $ r < | w | < R $, |
| + | $ 0 < r < R < \infty $. |
| + | The ratio $ R / r $ |
| + | of the radii of the boundary circles of this annulus is a conformal invariant and is called the modulus of the doubly-connected domain $ D $. |
| + | Let $ D $ |
| + | be an $ n $- |
| + | connected domain, $ n \geq 3 $, |
| + | with a non-degenerate boundary. $ D $ |
| + | can be conformally mapped onto some $ n $- |
| + | connected circular domain $ \Delta $, |
| + | which is a circular annulus $ r < | w | < R $ |
| + | with $ n- 2 $ |
| + | discs with bounding circles $ C _ {k} = \{ {w } : {| w - w _ {k} | = r _ {k} } \} $, |
| + | $ k = 1 \dots n - 2 $, |
| + | removed; the circles $ C _ {k} $, |
| + | $ k = 1 \dots n - 2 $, |
| + | lie in the annulus $ r < | w | < R $ |
| + | and pairwise do not have points in common. Here it can be assumed that $ R = 1 $ |
| + | and $ w _ {1} > 0 $. |
| + | Then $ \Delta $ |
| + | depends on $ 3 n - 6 $ |
| + | real parameters: the $ n - 1 $ |
| + | numbers $ r , r _ {1} \dots r _ {n-} 2 $ |
| + | and the $ 2 n - 5 $ |
| + | real parameters defining the centres $ w _ {k} $ |
| + | of the circles $ C _ {k} $, |
| + | $ k = 1 \dots n - 2 $. |
| + | These $ 3 n - 6 $ |
| + | real parameters can be taken as moduli of the $ n $- |
| + | connected domain $ D $ |
| + | in the case $ n \geq 3 $. |
| + | |
| + | As moduli of $ n $- |
| + | connected domains $ D $ |
| + | it is also possible to take any other $ \mu $ |
| + | real parameters ( $ \mu = 1 $ |
| + | if $ n = 2 $, |
| + | and $ \mu = 3 n - 6 $ |
| + | if $ n \geq 3 $) |
| + | which determine a conformal mapping of $ D $ |
| + | onto some canonical $ n $- |
| + | connected domain of another shape. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt. 10</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bers, "Uniformization, moduli, and Kleinian groups" ''Bull. London Math. Soc.'' , '''4''' (1972) pp. 257–300</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Courant, "Dirichlet's principle, conformal mapping, and minimal surfaces" , Interscience (1950) (With appendix by M. Schiffer: Some recent developments in the theory of conformal mapping)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Springer, "Introduction to Riemann surfaces", Addison-Wesley (1957) Chapt. 10 {{ZBL|0078.06602}}</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> L. Bers, "Uniformization, moduli, and Kleinian groups" ''Bull. London Math. Soc.'' , '''4''' (1972) pp. 257–300</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Courant, "Dirichlet's principle, conformal mapping, and minimal surfaces" , Interscience (1950) (With appendix by M. Schiffer: Some recent developments in the theory of conformal mapping)</TD></TR> |
| + | </table> |
Numerical characteristics (parameters) which are one and the same for all conformally-equivalent Riemann surfaces, and in their totality characterize the conformal equivalence class of a given Riemann surface. Here two Riemann surfaces $ R _ {1} $
and $ R _ {2} $
are called conformally equivalent if there is a conformal mapping from $ R _ {1} $
onto $ R _ {2} $.
For example, the conformal classes of compact Riemann surfaces of topological genus $ g > 1 $
are characterized by $ 6 g - 6 $
real moduli; a Riemann surface of torus type $ ( g = 1 ) $
is characterized by 2 moduli; an $ n $-
connected plane domain, considered as a Riemann surface with boundary, is characterized by $ 3 n - 6 $
moduli for $ n \geq 3 $.
About the structure of the moduli space of a Riemann surface see Riemann surfaces, conformal classes of.
A necessary condition for the conformal equivalence of two plane domains is that they have the same connectivity. According to the Riemann theorem, all simply-connected domains with more than one boundary point are conformally equivalent to each other; each such domain can be conformally mapped onto one canonical domain, usually taken to be the unit disc. For $ n $-
connected domains, $ n \geq 2 $,
a precise equivalent of this Riemann mapping theorem does not exist: It is impossible to give any fixed domain whatever onto which it is possible to univalently and conformally map all domains of a given order of connectivity. This has led to a more flexible definition of a canonical $ n $-
connected domain, which reflects the general geometric structure of this domain, but does not fix its moduli (see Conformal mapping).
Each doubly-connected domain $ D $
of the $ z $-
plane with non-degenerate boundary continua can be conformally mapped onto some circular annulus $ r < | w | < R $,
$ 0 < r < R < \infty $.
The ratio $ R / r $
of the radii of the boundary circles of this annulus is a conformal invariant and is called the modulus of the doubly-connected domain $ D $.
Let $ D $
be an $ n $-
connected domain, $ n \geq 3 $,
with a non-degenerate boundary. $ D $
can be conformally mapped onto some $ n $-
connected circular domain $ \Delta $,
which is a circular annulus $ r < | w | < R $
with $ n- 2 $
discs with bounding circles $ C _ {k} = \{ {w } : {| w - w _ {k} | = r _ {k} } \} $,
$ k = 1 \dots n - 2 $,
removed; the circles $ C _ {k} $,
$ k = 1 \dots n - 2 $,
lie in the annulus $ r < | w | < R $
and pairwise do not have points in common. Here it can be assumed that $ R = 1 $
and $ w _ {1} > 0 $.
Then $ \Delta $
depends on $ 3 n - 6 $
real parameters: the $ n - 1 $
numbers $ r , r _ {1} \dots r _ {n-} 2 $
and the $ 2 n - 5 $
real parameters defining the centres $ w _ {k} $
of the circles $ C _ {k} $,
$ k = 1 \dots n - 2 $.
These $ 3 n - 6 $
real parameters can be taken as moduli of the $ n $-
connected domain $ D $
in the case $ n \geq 3 $.
As moduli of $ n $-
connected domains $ D $
it is also possible to take any other $ \mu $
real parameters ( $ \mu = 1 $
if $ n = 2 $,
and $ \mu = 3 n - 6 $
if $ n \geq 3 $)
which determine a conformal mapping of $ D $
onto some canonical $ n $-
connected domain of another shape.
References
[1] | G. Springer, "Introduction to Riemann surfaces", Addison-Wesley (1957) Chapt. 10 Zbl 0078.06602 |
[2] | L. Bers, "Uniformization, moduli, and Kleinian groups" Bull. London Math. Soc. , 4 (1972) pp. 257–300 |
[3] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[4] | R. Courant, "Dirichlet's principle, conformal mapping, and minimal surfaces" , Interscience (1950) (With appendix by M. Schiffer: Some recent developments in the theory of conformal mapping) |