Difference between revisions of "Orthogonal matrix"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0703201.png | ||
+ | $#A+1 = 31 n = 0 | ||
+ | $#C+1 = 31 : ~/encyclopedia/old_files/data/O070/O.0700320 Orthogonal matrix | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A [[Matrix|matrix]] over a commutative ring $ R $ | ||
+ | with identity $ 1 $ | ||
+ | for which the [[Transposed matrix|transposed matrix]] coincides with the inverse. The determinant of an orthogonal matrix is equal to $ \pm 1 $. | ||
+ | The set of all orthogonal matrices of order $ n $ | ||
+ | over $ R $ | ||
+ | forms a subgroup of the [[General linear group|general linear group]] $ \mathop{\rm GL} _ {n} ( R) $. | ||
+ | For any real orthogonal matrix $ a $ | ||
+ | there is a real orthogonal matrix $ c $ | ||
+ | such that | ||
+ | |||
+ | $$ | ||
+ | cac ^ {-} 1 = \mathop{\rm diag} [\pm 1 \dots \pm 1 , a _ {1} \dots a _ {t} ], | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | a _ {j} = \left \| | ||
− | + | \begin{array}{rc} | |
+ | \cos \phi _ {j} &\sin \phi _ {j} \\ | ||
+ | - \sin \phi _ {j} &\cos \phi _ {j} \\ | ||
+ | \end{array} | ||
+ | \right \| . | ||
+ | $$ | ||
− | + | A non-singular complex matrix $ a $ | |
+ | is similar to a complex orthogonal matrix if and only if its system of [[Elementary divisors|elementary divisors]] possesses the following properties: | ||
− | 2) each elementary divisor of the form | + | 1) for $ \lambda \neq \pm 1 $, |
+ | the elementary divisors $ ( x - \lambda ) ^ {m} $ | ||
+ | and $ ( x - \lambda ^ {-} 1 ) ^ {m} $ | ||
+ | are repeated the same number of times; | ||
+ | |||
+ | 2) each elementary divisor of the form $ ( x \pm 1) ^ {2l} $ | ||
+ | is repeated an even number of times. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | The mapping | + | The mapping $ \alpha : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ |
+ | defined by an orthogonal matrix $ A $ | ||
+ | with respect to the standard basis, $ \alpha ( x) = Ax $, | ||
+ | $ x \in \mathbf R ^ {n} $, | ||
+ | preserves the standard inner product and hence defines an orthogonal mapping. More generally, if $ V $ | ||
+ | and $ W $ | ||
+ | are inner product spaces with inner products $ \langle , \rangle _ {V} $, | ||
+ | $ \langle , \rangle _ {W} $, | ||
+ | then a linear mapping $ \alpha : V \rightarrow W $ | ||
+ | such that $ \langle \alpha ( x) , \alpha ( y) \rangle _ {W} = \langle x, y \rangle _ {V} $ | ||
+ | is called an orthogonal mapping. | ||
− | Any non-singular (complex or real) matrix | + | Any non-singular (complex or real) matrix $ M $ |
+ | admits a [[Polar decomposition|polar decomposition]] $ M = SQ = Q _ {1} S _ {1} $ | ||
+ | with $ S $ | ||
+ | and $ S _ {1} $ | ||
+ | symmetric and $ Q $ | ||
+ | and $ Q _ {1} $ | ||
+ | orthogonal. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1959) pp. 263ff (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''1''' , Chelsea, reprint (1959) pp. 263ff (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932)</TD></TR></table> |
Latest revision as of 14:54, 7 June 2020
A matrix over a commutative ring $ R $
with identity $ 1 $
for which the transposed matrix coincides with the inverse. The determinant of an orthogonal matrix is equal to $ \pm 1 $.
The set of all orthogonal matrices of order $ n $
over $ R $
forms a subgroup of the general linear group $ \mathop{\rm GL} _ {n} ( R) $.
For any real orthogonal matrix $ a $
there is a real orthogonal matrix $ c $
such that
$$ cac ^ {-} 1 = \mathop{\rm diag} [\pm 1 \dots \pm 1 , a _ {1} \dots a _ {t} ], $$
where
$$ a _ {j} = \left \| \begin{array}{rc} \cos \phi _ {j} &\sin \phi _ {j} \\ - \sin \phi _ {j} &\cos \phi _ {j} \\ \end{array} \right \| . $$
A non-singular complex matrix $ a $ is similar to a complex orthogonal matrix if and only if its system of elementary divisors possesses the following properties:
1) for $ \lambda \neq \pm 1 $, the elementary divisors $ ( x - \lambda ) ^ {m} $ and $ ( x - \lambda ^ {-} 1 ) ^ {m} $ are repeated the same number of times;
2) each elementary divisor of the form $ ( x \pm 1) ^ {2l} $ is repeated an even number of times.
References
[1] | A.I. Mal'tsev, "Foundations of linear algebra" , Freeman (1963) (Translated from Russian) |
Comments
The mapping $ \alpha : \mathbf R ^ {n} \rightarrow \mathbf R ^ {n} $ defined by an orthogonal matrix $ A $ with respect to the standard basis, $ \alpha ( x) = Ax $, $ x \in \mathbf R ^ {n} $, preserves the standard inner product and hence defines an orthogonal mapping. More generally, if $ V $ and $ W $ are inner product spaces with inner products $ \langle , \rangle _ {V} $, $ \langle , \rangle _ {W} $, then a linear mapping $ \alpha : V \rightarrow W $ such that $ \langle \alpha ( x) , \alpha ( y) \rangle _ {W} = \langle x, y \rangle _ {V} $ is called an orthogonal mapping.
Any non-singular (complex or real) matrix $ M $ admits a polar decomposition $ M = SQ = Q _ {1} S _ {1} $ with $ S $ and $ S _ {1} $ symmetric and $ Q $ and $ Q _ {1} $ orthogonal.
References
[a1] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , 1 , Chelsea, reprint (1959) pp. 263ff (Translated from Russian) |
[a2] | W. Noll, "Finite dimensional spaces" , M. Nijhoff (1987) pp. Sect. 43 |
[a3] | H.W. Turnball, A.C. Aitken, "An introduction to the theory of canonical matrices" , Blackie & Son (1932) |
Orthogonal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Orthogonal_matrix&oldid=17418