# Transposed matrix

Jump to: navigation, search

The matrix obtained from a given (rectangular or square) matrix $A=\|a_{ik}\|$ ($i=1,\dots,m$; $k=1,\dots,n$) by interchanging the rows and the columns, that is, the matrix $\|a_{ik}'\|$, where $a_{ik}'=a_{ki}$ ($i=1,\dots,n$; $k=1,\dots,m$). The number of rows of the transposed matrix is equal to the number of columns of $A$, while the number of columns is equal to the number of rows of $A$. The transpose of a matrix $A$ is usually denoted by $A^T$ or $A'$.

#### Comments

Some elementary properties of the transposition of matrices are $(A+B)^T=A^T+B^T$, $(\alpha A)^T=\alpha A^T$, $(AB)^T=B^TA^T$, $(A^{-1})^T=(A^T)^{-1}$.

How to Cite This Entry:
Transposed matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transposed_matrix&oldid=33491
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article