Difference between revisions of "Calibre"
(Importing text file) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0200801.png | ||
+ | $#A+1 = 36 n = 2 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/C020/C.0200080 Calibre | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | A [[Cardinal number|cardinal number]] | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''of a topological space $ X $'' | ||
+ | |||
+ | A [[Cardinal number|cardinal number]] $ \tau $ | ||
+ | such that every family $ \mathfrak B $ | ||
+ | of cardinality $ \tau $, | ||
+ | consisting of non-empty open subsets of a topological space $ X $, | ||
+ | contains a subset $ \mathfrak B ^ \prime \subset \mathfrak B $, | ||
+ | also of cardinality $ \tau $, | ||
+ | with non-empty intersection, i.e. $ \cap \{ {U } : {U \in \mathfrak B ^ \prime } \} \neq \emptyset $. | ||
+ | A regular uncountable cardinal number $ \tau $ | ||
+ | is a calibre of a topological product $ \prod X _ \alpha $, | ||
+ | $ \alpha \in A $, | ||
+ | if and only if $ \tau $ | ||
+ | is a calibre of every factor $ X _ \alpha $. | ||
+ | The property of being a calibre is preserved under continuous mappings; every uncountable regular cardinal number is a calibre of any dyadic compactum. If the first uncountable cardinal number is a calibre of a space $ X $, | ||
+ | then $ X $ | ||
+ | satisfies the [[Suslin condition|Suslin condition]]. In some models of set theory the converse is almost true, namely, Martin's axiom and the condition $ \aleph _ {1} < 2 ^ {\aleph _ {0} } $ | ||
+ | imply the following: If a space $ X $ | ||
+ | satisfies the Suslin condition, then every uncountable family of non-empty open sets in $ X $ | ||
+ | contains an uncountable centred subfamily. In particular, in this model, the cardinal number $ \aleph _ {1} $ | ||
+ | is a calibre for every compactum with the Suslin condition. In some other models of set theory, a compactum with the Suslin condition exists for which $ \aleph _ {1} $ | ||
+ | is not a calibre. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.A. Suslin, "On the product of topological spaces" ''Trudy. Mat. Inst. Steklov'' , '''24''' (1948) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.A. Suslin, "On the product of topological spaces" ''Trudy. Mat. Inst. Steklov'' , '''24''' (1948) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
The spelling caliber is more common. | The spelling caliber is more common. | ||
− | Usually, calibers are defined using indexed collections of open sets. In that case a [[Cardinal number|cardinal number]] | + | Usually, calibers are defined using indexed collections of open sets. In that case a [[Cardinal number|cardinal number]] $ \kappa $ |
+ | is a caliber of $ X $ | ||
+ | if and only if for every collection $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ | ||
+ | of non-empty open subsets of $ X $ | ||
+ | there is a set $ A \subset \kappa $ | ||
+ | of size $ \kappa $ | ||
+ | such that $ \cap _ {\alpha \in A } U _ \alpha \neq \emptyset $. | ||
− | One also considers precalibers: a cardinal number | + | One also considers precalibers: a cardinal number $ \kappa $ |
+ | is a precaliber of $ X $ | ||
+ | if and only if for every collection $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ | ||
+ | of non-empty subsets of $ X $ | ||
+ | there is a set $ A \subset \kappa $ | ||
+ | of size $ \kappa $ | ||
+ | such that $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ | ||
+ | has the finite intersection property (i.e. the intersection of any finite number of $ U _ \alpha $ | ||
+ | is non-empty). Thus, Martin's axiom (cf. [[Suslin hypothesis|Suslin hypothesis]]) plus the negation of the [[Continuum hypothesis|continuum hypothesis]] imply that every space satisfying the Suslin condition has $ \aleph _ {1} $ | ||
+ | as a precaliber, while for a [[Compact space|compact space]] its calibers and precalibers are the same. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Argyros, A. Tsarpalias, "Calibers of compact spaces" ''Trans. Amer. Math. Soc.'' , '''270''' (1982) pp. 149–162</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Broverman, J. Ginsburg, K. Kunen, F.D. Tall, "Topologies determined by | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Argyros, A. Tsarpalias, "Calibers of compact spaces" ''Trans. Amer. Math. Soc.'' , '''270''' (1982) pp. 149–162</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Broverman, J. Ginsburg, K. Kunen, F.D. Tall, "Topologies determined by $\sigma$-ideals on $\omega_1$" ''Canad. J. Math.'' , '''30''' (1978) pp. 1306–1312</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> W.W. Comfort, S. Negrepontis, "Chain conditions in topology" , Cambridge Univ. Press (1982)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> I. Juhász, "Cardinal functions. Ten years later" , ''MC Tracts'' , '''123''' , Math. Centre (1980)</TD></TR></table> |
Latest revision as of 09:08, 26 March 2023
of a topological space $ X $
A cardinal number $ \tau $ such that every family $ \mathfrak B $ of cardinality $ \tau $, consisting of non-empty open subsets of a topological space $ X $, contains a subset $ \mathfrak B ^ \prime \subset \mathfrak B $, also of cardinality $ \tau $, with non-empty intersection, i.e. $ \cap \{ {U } : {U \in \mathfrak B ^ \prime } \} \neq \emptyset $. A regular uncountable cardinal number $ \tau $ is a calibre of a topological product $ \prod X _ \alpha $, $ \alpha \in A $, if and only if $ \tau $ is a calibre of every factor $ X _ \alpha $. The property of being a calibre is preserved under continuous mappings; every uncountable regular cardinal number is a calibre of any dyadic compactum. If the first uncountable cardinal number is a calibre of a space $ X $, then $ X $ satisfies the Suslin condition. In some models of set theory the converse is almost true, namely, Martin's axiom and the condition $ \aleph _ {1} < 2 ^ {\aleph _ {0} } $ imply the following: If a space $ X $ satisfies the Suslin condition, then every uncountable family of non-empty open sets in $ X $ contains an uncountable centred subfamily. In particular, in this model, the cardinal number $ \aleph _ {1} $ is a calibre for every compactum with the Suslin condition. In some other models of set theory, a compactum with the Suslin condition exists for which $ \aleph _ {1} $ is not a calibre.
References
[1] | N.A. Suslin, "On the product of topological spaces" Trudy. Mat. Inst. Steklov , 24 (1948) (In Russian) |
Comments
The spelling caliber is more common.
Usually, calibers are defined using indexed collections of open sets. In that case a cardinal number $ \kappa $ is a caliber of $ X $ if and only if for every collection $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ of non-empty open subsets of $ X $ there is a set $ A \subset \kappa $ of size $ \kappa $ such that $ \cap _ {\alpha \in A } U _ \alpha \neq \emptyset $.
One also considers precalibers: a cardinal number $ \kappa $ is a precaliber of $ X $ if and only if for every collection $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ of non-empty subsets of $ X $ there is a set $ A \subset \kappa $ of size $ \kappa $ such that $ \{ {U _ \alpha } : {\alpha \in \kappa } \} $ has the finite intersection property (i.e. the intersection of any finite number of $ U _ \alpha $ is non-empty). Thus, Martin's axiom (cf. Suslin hypothesis) plus the negation of the continuum hypothesis imply that every space satisfying the Suslin condition has $ \aleph _ {1} $ as a precaliber, while for a compact space its calibers and precalibers are the same.
References
[a1] | S. Argyros, A. Tsarpalias, "Calibers of compact spaces" Trans. Amer. Math. Soc. , 270 (1982) pp. 149–162 |
[a2] | S. Broverman, J. Ginsburg, K. Kunen, F.D. Tall, "Topologies determined by $\sigma$-ideals on $\omega_1$" Canad. J. Math. , 30 (1978) pp. 1306–1312 |
[a3] | W.W. Comfort, S. Negrepontis, "Chain conditions in topology" , Cambridge Univ. Press (1982) |
[a4] | I. Juhász, "Cardinal functions. Ten years later" , MC Tracts , 123 , Math. Centre (1980) |
Calibre. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Calibre&oldid=17075