Difference between revisions of "Bifunctor"
(Importing text file) |
m (eqref) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | b0161901.png | ||
+ | $#A+1 = 14 n = 0 | ||
+ | $#C+1 = 14 : ~/encyclopedia/old_files/data/B016/B.0106190 Bifunctor | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | A mapping $ T: \mathfrak A \times \mathfrak B \rightarrow \mathfrak C $, | ||
+ | defined on the Cartesian product of two categories $ \mathfrak A $ | ||
+ | and $ \mathfrak B $ | ||
+ | with values in $ \mathfrak C $, | ||
+ | which assigns to each pair of objects $ A \in \mathfrak A $, | ||
+ | $ B \in \mathfrak B $ | ||
+ | some object $ C \in \mathfrak C $, | ||
+ | and to each pair of morphisms | ||
+ | |||
+ | $$ | ||
+ | \alpha : A \rightarrow A ^ \prime ,\ \ | ||
+ | \beta : B \rightarrow B ^ \prime | ||
+ | $$ | ||
the morphism | the morphism | ||
− | + | \begin{equation} \label{eq1} | |
+ | T( \alpha , \beta ) : \ | ||
+ | T(A ^ \prime , B) \rightarrow \ | ||
+ | T(A, B ^ \prime ). | ||
+ | \end{equation} | ||
The following conditions | The following conditions | ||
− | + | \begin{equation} \label{eq2} | |
− | + | T(1 _ {A} , 1 _ {B} ) = 1 _ {T (A, B) } , | |
− | + | \end{equation} | |
− | |||
− | |||
+ | $$ | ||
+ | T ( \alpha ^ \prime \circ \alpha , \beta ^ \prime \circ \beta ) = T ( | ||
+ | \alpha , \beta ^ \prime ) \circ T ( \alpha ^ \prime , \beta ), | ||
+ | $$ | ||
+ | must also be met. In such a case, one says that the functor $T$ is contravariant with respect to the first argument and covariant with respect to the second. | ||
====Comments==== | ====Comments==== | ||
− | What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([[#References|[a1]]]), has | + | What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([[#References|[a1]]]), has \eqref{eq1} and \eqref{eq2} replaced by |
− | + | \begin{equation} \label{eq1bis} \tag{1'} | |
+ | T ( \alpha , \beta ): \ | ||
+ | T (A, B) \rightarrow \ | ||
+ | T (A ^ \prime , B ^ \prime ), | ||
+ | \end{equation} | ||
− | + | \begin{equation} \label{eq2bis}\tag{2'} | |
+ | T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha | ||
+ | ^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). | ||
+ | \end{equation} | ||
Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument. | Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Mitchell, "Theory of categories" , Acad. Press (1965)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Mitchell, "Theory of categories" , Acad. Press (1965)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:02, 29 March 2024
A mapping $ T: \mathfrak A \times \mathfrak B \rightarrow \mathfrak C $,
defined on the Cartesian product of two categories $ \mathfrak A $
and $ \mathfrak B $
with values in $ \mathfrak C $,
which assigns to each pair of objects $ A \in \mathfrak A $,
$ B \in \mathfrak B $
some object $ C \in \mathfrak C $,
and to each pair of morphisms
$$ \alpha : A \rightarrow A ^ \prime ,\ \ \beta : B \rightarrow B ^ \prime $$
the morphism
\begin{equation} \label{eq1} T( \alpha , \beta ) : \ T(A ^ \prime , B) \rightarrow \ T(A, B ^ \prime ). \end{equation}
The following conditions
\begin{equation} \label{eq2} T(1 _ {A} , 1 _ {B} ) = 1 _ {T (A, B) } , \end{equation}
$$ T ( \alpha ^ \prime \circ \alpha , \beta ^ \prime \circ \beta ) = T ( \alpha , \beta ^ \prime ) \circ T ( \alpha ^ \prime , \beta ), $$
must also be met. In such a case, one says that the functor $T$ is contravariant with respect to the first argument and covariant with respect to the second.
Comments
What is described above is a bifunctor contravariant in its first argument and covariant in its second. A bifunctor covariant in both arguments, the more fundamental notion ([a1]), has \eqref{eq1} and \eqref{eq2} replaced by
\begin{equation} \label{eq1bis} \tag{1'} T ( \alpha , \beta ): \ T (A, B) \rightarrow \ T (A ^ \prime , B ^ \prime ), \end{equation}
\begin{equation} \label{eq2bis}\tag{2'} T ( \alpha ^ \prime \alpha , \beta ^ \prime \beta ) = T ( \alpha ^ \prime , \beta ^ \prime ) \circ T ( \alpha , \beta ). \end{equation}
Similarly one can define bifunctors contravariant in both arguments and covariant in the first and contravariant in the second argument.
References
[a1] | B. Mitchell, "Theory of categories" , Acad. Press (1965) |
Bifunctor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bifunctor&oldid=17051