Namespaces
Variants
Actions

Difference between revisions of "Block"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An [[Ideal|ideal]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106301.png" /> of a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106302.png" /> is said to be indecomposable if, for any ideals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106303.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106304.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106305.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106306.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106307.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106308.png" />. The ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b1106309.png" /> is called a direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063011.png" /> for some ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063013.png" />. A block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063014.png" /> is defined to be any ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063015.png" /> which is an indecomposable direct summand of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063016.png" />. By a block idempotent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063017.png" /> one understands any primitive [[Idempotent|idempotent]] of the centre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063018.png" /> (cf. also [[Centre of a ring|Centre of a ring]]). An ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063020.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063021.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063022.png" /> for some (necessarily unique) block idempotent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063023.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063024.png" />. Thus blocks and block idempotents determine each other.
+
<!--
 +
b1106301.png
 +
$#A+1 = 113 n = 0
 +
$#C+1 = 113 : ~/encyclopedia/old_files/data/B110/B.1100630 Block
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Any decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063025.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063026.png" />, where each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063027.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063028.png" />, is called a block decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063029.png" />. In general, such a decomposition need not exist, but it does exist if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063030.png" /> is semi-perfect (cf. [[Perfect ring|Perfect ring]]). In the classical case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063031.png" /> is semi-primitive Artinian (cf. [[Primitive ring|Primitive ring]]; [[Artinian ring|Artinian ring]]), each block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063032.png" /> is a complete matrix ring over a suitable division ring, and the number of blocks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063033.png" /> is equal to the number of non-isomorphic simple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063034.png" />-modules.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The study of blocks is especially important in the context of group representation theory (see [[Representation of a group|Representation of a group]]; [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]]). Here, the role of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063035.png" /> is played by the group algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063036.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063037.png" /> is a [[Finite group|finite group]] and the commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063038.png" /> is assumed to be a complete Noetherian semi-local ring (cf. also [[Commutative ring|Commutative ring]]; [[Noetherian ring|Noetherian ring]]; [[Local ring|Local ring]]) such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063039.png" /> has prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063040.png" />. The most important special cases are:
+
An [[Ideal|ideal]]  $  I $
 +
of a ring  $  A $
 +
is said to be indecomposable if, for any ideals  $  X $
 +
and  $  Y $
 +
of  $  A $,  
 +
$  I = X \oplus Y $
 +
implies  $  X = 0 $
 +
or  $  Y = 0 $.  
 +
The ideal  $  I $
 +
is called a direct summand of  $  A $
 +
if  $  A = I \oplus J $
 +
for some ideal  $  J $
 +
of  $  A $.  
 +
A block of  $  A $
 +
is defined to be any ideal of  $  A $
 +
which is an indecomposable direct summand of  $  A $.  
 +
By a block idempotent of  $  A $
 +
one understands any primitive [[Idempotent|idempotent]] of the centre of  $  A $(
 +
cf. also [[Centre of a ring|Centre of a ring]]). An ideal  $  B $
 +
of  $  A $
 +
is a block of  $  A $
 +
if and only if  $  B = Ae $
 +
for some (necessarily unique) block idempotent  $  e $
 +
of  $  A $.  
 +
Thus blocks and block idempotents determine each other.
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063041.png" /> is a complete discrete valuation ring of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063042.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063043.png" /> of prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063044.png" />;
+
Any decomposition of  $  A $
 +
of the form  $  A = B _ {1} \oplus \dots \oplus B _ {n} $,
 +
where each  $  B _ {i} $
 +
is a block of  $  A $,
 +
is called a block decomposition of  $  A $.
 +
In general, such a decomposition need not exist, but it does exist if  $  A $
 +
is semi-perfect (cf. [[Perfect ring|Perfect ring]]). In the classical case where  $  A $
 +
is semi-primitive Artinian (cf. [[Primitive ring|Primitive ring]]; [[Artinian ring|Artinian ring]]), each block of  $  A $
 +
is a complete matrix ring over a suitable division ring, and the number of blocks of $  A $
 +
is equal to the number of non-isomorphic simple  $  A $-
 +
modules.
  
<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063045.png" /> is a field of prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063046.png" />.
+
The study of blocks is especially important in the context of group representation theory (see [[Representation of a group|Representation of a group]]; [[#References|[a1]]], [[#References|[a2]]], [[#References|[a3]]], [[#References|[a4]]], [[#References|[a5]]]). Here, the role of  $  A $
 +
is played by the group algebra  $  RG $,
 +
where  $  G $
 +
is a [[Finite group|finite group]] and the commutative ring  $  R $
 +
is assumed to be a complete Noetherian semi-local ring (cf. also [[Commutative ring|Commutative ring]]; [[Noetherian ring|Noetherian ring]]; [[Local ring|Local ring]]) such that  $  R/J ( R ) $
 +
has prime characteristic  $  p $.  
 +
The most important special cases are:
  
One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063047.png" /> into blocks. The main idea is due to R. Brauer and can be described as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063048.png" /> be a [[Finite group|finite group]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063049.png" /> be a prime number. Assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063050.png" /> is a complete discrete [[Valuation|valuation]] ring of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063052.png" /> is the quotient field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063053.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063054.png" /> is of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063055.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063056.png" /> be the set of all irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063057.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063058.png" /> (cf. [[Character of a group|Character of a group]]) and write <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063059.png" /> to indicate that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063060.png" /> is a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063061.png" /> whose corresponding block idempotent is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063062.png" />, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063063.png" />. The character <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063064.png" /> is said to belong to the block <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063065.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063066.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063067.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063068.png" /> is extended by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063069.png" />-linearity to the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063070.png" />). It turns out that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063071.png" /> are all distinct blocks of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063072.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063073.png" /> is a disjoint union of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063075.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063076.png" /> denotes the set of irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063077.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063078.png" /> belonging to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063079.png" />. In the classical case studied by Brauer, namely when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063080.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063081.png" />, the irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063082.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063083.png" /> are identifiable with the irreducible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063084.png" />-characters of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063085.png" />.
+
R $
 +
is a complete discrete valuation ring of characteristic 0 $
 +
with  $  R/J ( R ) $
 +
of prime characteristic  $  p $;
  
Assume that, in the context of the previous paragraph, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063086.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063087.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063088.png" /> be a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063089.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063090.png" /> be the order of Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063091.png" />-subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063092.png" /> (cf. [[Sylow subgroup|Sylow subgroup]]). It turns out that there exists an integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063093.png" />, called the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063094.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063095.png" /> is the largest power of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063096.png" /> which divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063097.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063098.png" />. The notion of the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b11063099.png" /> can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630100.png" /> is a complete Noetherian semi-local ring such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630101.png" /> has prime characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630102.png" /> (see [[#References|[a5]]]; [[Noetherian ring|Noetherian ring]]).
+
$  R $
 +
is a field of prime characteristic $  p $.
  
For the classical case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630103.png" /> is a splitting field for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630104.png" />, one has the following famous problem, frequently called the Brauer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630106.png" />-conjecture. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630107.png" /> be a block of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630108.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630109.png" />. Is it true that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630110.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630111.png" /> is the defect of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630112.png" />? Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630113.png" />-conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110630/b110630114.png" />-conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [[#References|[a5]]]).
+
One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of  $  G $
 +
into blocks. The main idea is due to R. Brauer and can be described as follows. Let  $  G $
 +
be a [[Finite group|finite group]] and let  $  p $
 +
be a prime number. Assume that  $  R $
 +
is a complete discrete [[Valuation|valuation]] ring of characteristic  $  0 $,
 +
$  K $
 +
is the quotient field of  $  R $
 +
and  $  R/J ( R ) $
 +
is of characteristic  $  p $.
 +
Let  $  { \mathop{\rm Irr} } ( G ) $
 +
be the set of all irreducible  $  K $-
 +
characters of  $  G $(
 +
cf. [[Character of a group|Character of a group]]) and write  $  B = B ( e ) $
 +
to indicate that  $  B $
 +
is a block of  $  RG $
 +
whose corresponding block idempotent is  $  e $,
 +
i.e.,  $  B = RGe $.
 +
The character  $  \chi \in { \mathop{\rm Irr} } ( G ) $
 +
is said to belong to the block  $  B = B ( e ) $
 +
of  $  RG $
 +
if  $  \chi ( e ) \neq 0 $(
 +
here  $  \chi $
 +
is extended by  $  K $-
 +
linearity to the mapping  $  \chi : {KG } \rightarrow K $).  
 +
It turns out that if  $  B _ {1} \dots B _ {n} $
 +
are all distinct blocks of  $  RG $,
 +
then  $  { \mathop{\rm Irr} } ( G ) $
 +
is a disjoint union of the  $  { \mathop{\rm Irr} } ( B _ {i} ) $,
 +
$  1 \leq  i \leq  n $,
 +
where  $  { \mathop{\rm Irr} } ( B _ {i} ) $
 +
denotes the set of irreducible  $  K $-
 +
characters of  $  G $
 +
belonging to  $  B _ {i} $.  
 +
In the classical case studied by Brauer, namely when  $  K $
 +
is a splitting field for  $  G $,
 +
the irreducible  $  K $-
 +
characters of  $  G $
 +
are identifiable with the irreducible  $  \mathbf C $-
 +
characters of  $  G $.
 +
 
 +
Assume that, in the context of the previous paragraph,  $  K $
 +
is a splitting field for $  G $.
 +
Let  $  B $
 +
be a block of  $  RG $
 +
and let  $  p  ^ {a} $
 +
be the order of Sylow  $  p $-
 +
subgroups of  $  G $(
 +
cf. [[Sylow subgroup|Sylow subgroup]]). It turns out that there exists an integer  $  d \geq  0 $,
 +
called the defect of  $  B $,
 +
such that  $  p ^ {a - d } $
 +
is the largest power of  $  p $
 +
which divides  $  \chi ( 1 ) $
 +
for all  $  \chi \in { \mathop{\rm Irr} } ( B ) $.  
 +
The notion of the defect of  $  B $
 +
can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that  $  R $
 +
is a complete Noetherian semi-local ring such that  $  R/J ( R ) $
 +
has prime characteristic  $  p $(
 +
see [[#References|[a5]]]; [[Noetherian ring|Noetherian ring]]).
 +
 
 +
For the classical case where  $  K $
 +
is a splitting field for  $  G $,  
 +
one has the following famous problem, frequently called the Brauer $  k ( B ) $-
 +
conjecture. Let $  B $
 +
be a block of $  RG $
 +
and let $  k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $.  
 +
Is it true that $  k ( B ) \leq  p  ^ {d} $,  
 +
where $  d $
 +
is the defect of $  B $?  
 +
Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $  k ( B ) $-
 +
conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $  k ( B ) $-
 +
conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [[#References|[a5]]]).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''1''' , North-Holland  (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''2''' , North-Holland  (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''3''' , North-Holland  (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''4''' , North-Holland  (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''5''' , North-Holland  (1996)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''1''' , North-Holland  (1992)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''2''' , North-Holland  (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''3''' , North-Holland  (1994)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''4''' , North-Holland  (1995)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  G. Karpilovsky,  "Group representations" , '''5''' , North-Holland  (1996)</TD></TR></table>

Latest revision as of 10:59, 29 May 2020


An ideal $ I $ of a ring $ A $ is said to be indecomposable if, for any ideals $ X $ and $ Y $ of $ A $, $ I = X \oplus Y $ implies $ X = 0 $ or $ Y = 0 $. The ideal $ I $ is called a direct summand of $ A $ if $ A = I \oplus J $ for some ideal $ J $ of $ A $. A block of $ A $ is defined to be any ideal of $ A $ which is an indecomposable direct summand of $ A $. By a block idempotent of $ A $ one understands any primitive idempotent of the centre of $ A $( cf. also Centre of a ring). An ideal $ B $ of $ A $ is a block of $ A $ if and only if $ B = Ae $ for some (necessarily unique) block idempotent $ e $ of $ A $. Thus blocks and block idempotents determine each other.

Any decomposition of $ A $ of the form $ A = B _ {1} \oplus \dots \oplus B _ {n} $, where each $ B _ {i} $ is a block of $ A $, is called a block decomposition of $ A $. In general, such a decomposition need not exist, but it does exist if $ A $ is semi-perfect (cf. Perfect ring). In the classical case where $ A $ is semi-primitive Artinian (cf. Primitive ring; Artinian ring), each block of $ A $ is a complete matrix ring over a suitable division ring, and the number of blocks of $ A $ is equal to the number of non-isomorphic simple $ A $- modules.

The study of blocks is especially important in the context of group representation theory (see Representation of a group; [a1], [a2], [a3], [a4], [a5]). Here, the role of $ A $ is played by the group algebra $ RG $, where $ G $ is a finite group and the commutative ring $ R $ is assumed to be a complete Noetherian semi-local ring (cf. also Commutative ring; Noetherian ring; Local ring) such that $ R/J ( R ) $ has prime characteristic $ p $. The most important special cases are:

$ R $ is a complete discrete valuation ring of characteristic $ 0 $ with $ R/J ( R ) $ of prime characteristic $ p $;

$ R $ is a field of prime characteristic $ p $.

One of the most useful aspects of modular representation theory is the study of the distribution of the irreducible ordinary characters of $ G $ into blocks. The main idea is due to R. Brauer and can be described as follows. Let $ G $ be a finite group and let $ p $ be a prime number. Assume that $ R $ is a complete discrete valuation ring of characteristic $ 0 $, $ K $ is the quotient field of $ R $ and $ R/J ( R ) $ is of characteristic $ p $. Let $ { \mathop{\rm Irr} } ( G ) $ be the set of all irreducible $ K $- characters of $ G $( cf. Character of a group) and write $ B = B ( e ) $ to indicate that $ B $ is a block of $ RG $ whose corresponding block idempotent is $ e $, i.e., $ B = RGe $. The character $ \chi \in { \mathop{\rm Irr} } ( G ) $ is said to belong to the block $ B = B ( e ) $ of $ RG $ if $ \chi ( e ) \neq 0 $( here $ \chi $ is extended by $ K $- linearity to the mapping $ \chi : {KG } \rightarrow K $). It turns out that if $ B _ {1} \dots B _ {n} $ are all distinct blocks of $ RG $, then $ { \mathop{\rm Irr} } ( G ) $ is a disjoint union of the $ { \mathop{\rm Irr} } ( B _ {i} ) $, $ 1 \leq i \leq n $, where $ { \mathop{\rm Irr} } ( B _ {i} ) $ denotes the set of irreducible $ K $- characters of $ G $ belonging to $ B _ {i} $. In the classical case studied by Brauer, namely when $ K $ is a splitting field for $ G $, the irreducible $ K $- characters of $ G $ are identifiable with the irreducible $ \mathbf C $- characters of $ G $.

Assume that, in the context of the previous paragraph, $ K $ is a splitting field for $ G $. Let $ B $ be a block of $ RG $ and let $ p ^ {a} $ be the order of Sylow $ p $- subgroups of $ G $( cf. Sylow subgroup). It turns out that there exists an integer $ d \geq 0 $, called the defect of $ B $, such that $ p ^ {a - d } $ is the largest power of $ p $ which divides $ \chi ( 1 ) $ for all $ \chi \in { \mathop{\rm Irr} } ( B ) $. The notion of the defect of $ B $ can be defined by purely ring-theoretic properties under much more general circumstances. Namely, it suffices to assume that $ R $ is a complete Noetherian semi-local ring such that $ R/J ( R ) $ has prime characteristic $ p $( see [a5]; Noetherian ring).

For the classical case where $ K $ is a splitting field for $ G $, one has the following famous problem, frequently called the Brauer $ k ( B ) $- conjecture. Let $ B $ be a block of $ RG $ and let $ k ( B ) = | { { \mathop{\rm Irr} } ( B ) } | $. Is it true that $ k ( B ) \leq p ^ {d} $, where $ d $ is the defect of $ B $? Although many special cases have been attacked successfully, the general case is still far from being solved. So far (1996), Brauer's $ k ( B ) $- conjecture has not been verified for all finite simple groups. Moreover, it is not known whether Brauer's $ k ( B ) $- conjecture can be reduced to the case of simple (or at least quasi-simple) groups (see [a5]).

References

[a1] G. Karpilovsky, "Group representations" , 1 , North-Holland (1992)
[a2] G. Karpilovsky, "Group representations" , 2 , North-Holland (1993)
[a3] G. Karpilovsky, "Group representations" , 3 , North-Holland (1994)
[a4] G. Karpilovsky, "Group representations" , 4 , North-Holland (1995)
[a5] G. Karpilovsky, "Group representations" , 5 , North-Holland (1996)
How to Cite This Entry:
Block. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Block&oldid=17013
This article was adapted from an original article by G. Karpilovsky (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article