Difference between revisions of "Pseudo-quadratic form"
(Importing text file) |
(→References: details) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0757801.png | ||
| + | $#A+1 = 27 n = 0 | ||
| + | $#C+1 = 27 : ~/encyclopedia/old_files/data/P075/P.0705780 Pseudo\AAhquadratic form | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | Let $ D $ | |
| + | be a division ring (cf. [[Division algebra|Division algebra]]) with centre $ k $ | ||
| + | and let $ V $ | ||
| + | be a right vector space over $ D $. | ||
| + | Let $ \sigma $ | ||
| + | be an automorphism of $ D $ | ||
| + | and $ \epsilon \in D $ | ||
| + | such that $ \epsilon \sigma ( \epsilon ) = 1 $, | ||
| + | $ \sigma ^ {2} ( x) = \epsilon x \epsilon ^ {-} 1 $ | ||
| + | for all $ x \in D $. | ||
| + | Assume also that $ \epsilon \not\equiv - 1 $ | ||
| + | if $ \sigma = \mathop{\rm id} $ | ||
| + | and $ \mathop{\rm char} ( D) \neq 2 $. | ||
| + | Set | ||
| − | + | $$ | |
| + | D ( \sigma , \epsilon ) = \{ {x - \sigma ( x) \epsilon } : {x \in D } \} | ||
| + | . | ||
| + | $$ | ||
| + | |||
| + | This is an additive subgroup of $ D $. | ||
| + | Let $ \overline{D}\; $ | ||
| + | be the quotient $ \overline{D}\; = D / D ( \sigma , \epsilon ) $, | ||
| + | and let $ x \mapsto \overline{x}\; $ | ||
| + | denote the quotient mapping $ D \rightarrow \overline{D}\; $. | ||
| + | A pseudo-quadratic form on $ V $ | ||
| + | is a function $ q : V \rightarrow \overline{D}\; $ | ||
| + | such that there exists a trace-valued $ ( \sigma - \epsilon ) $- | ||
| + | Hermitian form (cf. [[Sesquilinear form|Sesquilinear form]]) $ f : V \times V \rightarrow D $ | ||
| + | such that $ q ( v+ w) = q( v) + q( w) + \overline{ {f( v , w) }}\; $. | ||
| + | The form $ f $ | ||
| + | is uniquely determined by this and is called the sesquilinearization of $ q $. | ||
| + | |||
| + | A $ ( \mathop{\rm id} , 1) $- | ||
| + | pseudo-quadratic form is a [[Quadratic form|quadratic form]] in the usual sense. The Witt index of a pseudo-quadratic form is that of the associated sesquilinear form. | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1963)</TD></TR> | ||
| + | </table> | ||
Latest revision as of 13:15, 7 April 2023
Let $ D $
be a division ring (cf. Division algebra) with centre $ k $
and let $ V $
be a right vector space over $ D $.
Let $ \sigma $
be an automorphism of $ D $
and $ \epsilon \in D $
such that $ \epsilon \sigma ( \epsilon ) = 1 $,
$ \sigma ^ {2} ( x) = \epsilon x \epsilon ^ {-} 1 $
for all $ x \in D $.
Assume also that $ \epsilon \not\equiv - 1 $
if $ \sigma = \mathop{\rm id} $
and $ \mathop{\rm char} ( D) \neq 2 $.
Set
$$ D ( \sigma , \epsilon ) = \{ {x - \sigma ( x) \epsilon } : {x \in D } \} . $$
This is an additive subgroup of $ D $. Let $ \overline{D}\; $ be the quotient $ \overline{D}\; = D / D ( \sigma , \epsilon ) $, and let $ x \mapsto \overline{x}\; $ denote the quotient mapping $ D \rightarrow \overline{D}\; $. A pseudo-quadratic form on $ V $ is a function $ q : V \rightarrow \overline{D}\; $ such that there exists a trace-valued $ ( \sigma - \epsilon ) $- Hermitian form (cf. Sesquilinear form) $ f : V \times V \rightarrow D $ such that $ q ( v+ w) = q( v) + q( w) + \overline{ {f( v , w) }}\; $. The form $ f $ is uniquely determined by this and is called the sesquilinearization of $ q $.
A $ ( \mathop{\rm id} , 1) $- pseudo-quadratic form is a quadratic form in the usual sense. The Witt index of a pseudo-quadratic form is that of the associated sesquilinear form.
References
| [a1] | J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2 |
| [a2] | N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques |
| [a3] | J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1963) |
Pseudo-quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-quadratic_form&oldid=15903