Difference between revisions of "Pseudo-quadratic form"
(Importing text file) |
(→References: details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0757801.png | ||
+ | $#A+1 = 27 n = 0 | ||
+ | $#C+1 = 27 : ~/encyclopedia/old_files/data/P075/P.0705780 Pseudo\AAhquadratic form | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Let $ D $ | |
+ | be a division ring (cf. [[Division algebra|Division algebra]]) with centre $ k $ | ||
+ | and let $ V $ | ||
+ | be a right vector space over $ D $. | ||
+ | Let $ \sigma $ | ||
+ | be an automorphism of $ D $ | ||
+ | and $ \epsilon \in D $ | ||
+ | such that $ \epsilon \sigma ( \epsilon ) = 1 $, | ||
+ | $ \sigma ^ {2} ( x) = \epsilon x \epsilon ^ {-} 1 $ | ||
+ | for all $ x \in D $. | ||
+ | Assume also that $ \epsilon \not\equiv - 1 $ | ||
+ | if $ \sigma = \mathop{\rm id} $ | ||
+ | and $ \mathop{\rm char} ( D) \neq 2 $. | ||
+ | Set | ||
− | + | $$ | |
+ | D ( \sigma , \epsilon ) = \{ {x - \sigma ( x) \epsilon } : {x \in D } \} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | This is an additive subgroup of $ D $. | ||
+ | Let $ \overline{D}\; $ | ||
+ | be the quotient $ \overline{D}\; = D / D ( \sigma , \epsilon ) $, | ||
+ | and let $ x \mapsto \overline{x}\; $ | ||
+ | denote the quotient mapping $ D \rightarrow \overline{D}\; $. | ||
+ | A pseudo-quadratic form on $ V $ | ||
+ | is a function $ q : V \rightarrow \overline{D}\; $ | ||
+ | such that there exists a trace-valued $ ( \sigma - \epsilon ) $- | ||
+ | Hermitian form (cf. [[Sesquilinear form|Sesquilinear form]]) $ f : V \times V \rightarrow D $ | ||
+ | such that $ q ( v+ w) = q( v) + q( w) + \overline{ {f( v , w) }}\; $. | ||
+ | The form $ f $ | ||
+ | is uniquely determined by this and is called the sesquilinearization of $ q $. | ||
+ | |||
+ | A $ ( \mathop{\rm id} , 1) $- | ||
+ | pseudo-quadratic form is a [[Quadratic form|quadratic form]] in the usual sense. The Witt index of a pseudo-quadratic form is that of the associated sesquilinear form. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1963)</TD></TR> | ||
+ | </table> |
Latest revision as of 13:15, 7 April 2023
Let $ D $
be a division ring (cf. Division algebra) with centre $ k $
and let $ V $
be a right vector space over $ D $.
Let $ \sigma $
be an automorphism of $ D $
and $ \epsilon \in D $
such that $ \epsilon \sigma ( \epsilon ) = 1 $,
$ \sigma ^ {2} ( x) = \epsilon x \epsilon ^ {-} 1 $
for all $ x \in D $.
Assume also that $ \epsilon \not\equiv - 1 $
if $ \sigma = \mathop{\rm id} $
and $ \mathop{\rm char} ( D) \neq 2 $.
Set
$$ D ( \sigma , \epsilon ) = \{ {x - \sigma ( x) \epsilon } : {x \in D } \} . $$
This is an additive subgroup of $ D $. Let $ \overline{D}\; $ be the quotient $ \overline{D}\; = D / D ( \sigma , \epsilon ) $, and let $ x \mapsto \overline{x}\; $ denote the quotient mapping $ D \rightarrow \overline{D}\; $. A pseudo-quadratic form on $ V $ is a function $ q : V \rightarrow \overline{D}\; $ such that there exists a trace-valued $ ( \sigma - \epsilon ) $- Hermitian form (cf. Sesquilinear form) $ f : V \times V \rightarrow D $ such that $ q ( v+ w) = q( v) + q( w) + \overline{ {f( v , w) }}\; $. The form $ f $ is uniquely determined by this and is called the sesquilinearization of $ q $.
A $ ( \mathop{\rm id} , 1) $- pseudo-quadratic form is a quadratic form in the usual sense. The Witt index of a pseudo-quadratic form is that of the associated sesquilinear form.
References
[a1] | J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2 |
[a2] | N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques |
[a3] | J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1963) |
Pseudo-quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-quadratic_form&oldid=15903