Pseudo-quadratic form
Let $ D $
be a division ring (cf. Division algebra) with centre $ k $
and let $ V $
be a right vector space over $ D $.
Let $ \sigma $
be an automorphism of $ D $
and $ \epsilon \in D $
such that $ \epsilon \sigma ( \epsilon ) = 1 $,
$ \sigma ^ {2} ( x) = \epsilon x \epsilon ^ {-} 1 $
for all $ x \in D $.
Assume also that $ \epsilon \not\equiv - 1 $
if $ \sigma = \mathop{\rm id} $
and $ \mathop{\rm char} ( D) \neq 2 $.
Set
$$ D ( \sigma , \epsilon ) = \{ {x - \sigma ( x) \epsilon } : {x \in D } \} . $$
This is an additive subgroup of $ D $. Let $ \overline{D}\; $ be the quotient $ \overline{D}\; = D / D ( \sigma , \epsilon ) $, and let $ x \mapsto \overline{x}\; $ denote the quotient mapping $ D \rightarrow \overline{D}\; $. A pseudo-quadratic form on $ V $ is a function $ q : V \rightarrow \overline{D}\; $ such that there exists a trace-valued $ ( \sigma - \epsilon ) $- Hermitian form (cf. Sesquilinear form) $ f : V \times V \rightarrow D $ such that $ q ( v+ w) = q( v) + q( w) + \overline{ {f( v , w) }}\; $. The form $ f $ is uniquely determined by this and is called the sesquilinearization of $ q $.
A $ ( \mathop{\rm id} , 1) $- pseudo-quadratic form is a quadratic form in the usual sense. The Witt index of a pseudo-quadratic form is that of the associated sesquilinear form.
References
[a1] | J. Tits, "Buildings and BN-pairs of spherical type" , Springer (1974) pp. Sect. 8.2 |
[a2] | N. Bourbaki, "Eléments de mathématique. Algèbre" , Hermann (1959) pp. Chapt. 9. Formes sesquilinéaires et formes quadratiques |
[a3] | J.A. Dieudonné, "La géométrie des groupes classiques" , Springer (1963) |
Pseudo-quadratic form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-quadratic_form&oldid=53614