Difference between revisions of "Universal function"
(Importing text file) |
m (fix tex) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | u0956801.png | ||
| + | $#A+1 = 18 n = 0 | ||
| + | $#C+1 = 18 : ~/encyclopedia/old_files/data/U095/U.0905680 Universal function | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''for a given (countable) class $ K $ | |
| + | of functions of type $ \mathbf N ^ {n} \rightarrow \mathbf N $'' | ||
| − | + | A function $ F ( y , x _ {1} \dots x _ {n} ) $ | |
| + | of type $ \mathbf N ^ {n+1} \rightarrow \mathbf N $ | ||
| + | such that for any function $ f ( x _ {1} \dots x _ {n} ) \in K $ | ||
| + | there exists an $ i \in \mathbf N $ | ||
| + | for which | ||
| − | + | $$ \tag{* } | |
| + | f ( x _ {1} \dots x _ {n} ) = \ | ||
| + | F ( i , x _ {1} \dots x _ {n} ) . | ||
| + | $$ | ||
| − | + | Here, $ \mathbf N $ | |
| + | is the set of natural numbers and the equation (*) means that the functions $ f ( x _ {1} \dots x _ {n} ) $ | ||
| + | and $ F ( i , x _ {1} \dots x _ {n} ) $ | ||
| + | are defined for the same set of arguments, and their values on this set coincide. Sometimes it is required in the definition of a universal function that for each $ i \in \mathbf N $ | ||
| + | the function $ F ( i , x _ {1} \dots x _ {n} ) $ | ||
| + | lies in $ K $( | ||
| + | cf. [[#References|[4]]]). There are a number of other variants of the definition of a universal function (cf. [[#References|[1]]], [[#References|[2]]]). | ||
| + | |||
| + | A universal function exists for every countable class of functions. The following universal functions play an important role in the theory of algorithms: 1) universal partial recursive functions for the class of all $ n $- | ||
| + | place $ ( n \geq 0 ) $ | ||
| + | partial recursive functions (cf. [[Partial recursive function|Partial recursive function]]); and 2) universal general recursive functions for the class of all $ n $- | ||
| + | place primitive recursive functions (cf. [[Primitive recursive function|Primitive recursive function]]). | ||
| + | |||
| + | If a function $ \psi ( y , x ) $ | ||
| + | is universal for the class of all one-place partial recursive functions, then it cannot be extended to a total recursive function, and the set $ \{ {x } : {\psi ( x , x ) \textrm{ is defined } } \} $ | ||
| + | is an example of a recursively-enumerable, but not recursive, set of natural numbers (cf. also [[Enumerable set|Enumerable set]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Peter, "Recursive functions" , Acad. Press (1967) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Uspenskii, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Peter, "Recursive functions" , Acad. Press (1967) (Translated from German)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Uspenskii, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) pp. 164–165</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) pp. 164–165</TD></TR></table> | ||
Latest revision as of 13:01, 19 December 2020
for a given (countable) class $ K $
of functions of type $ \mathbf N ^ {n} \rightarrow \mathbf N $
A function $ F ( y , x _ {1} \dots x _ {n} ) $ of type $ \mathbf N ^ {n+1} \rightarrow \mathbf N $ such that for any function $ f ( x _ {1} \dots x _ {n} ) \in K $ there exists an $ i \in \mathbf N $ for which
$$ \tag{* } f ( x _ {1} \dots x _ {n} ) = \ F ( i , x _ {1} \dots x _ {n} ) . $$
Here, $ \mathbf N $ is the set of natural numbers and the equation (*) means that the functions $ f ( x _ {1} \dots x _ {n} ) $ and $ F ( i , x _ {1} \dots x _ {n} ) $ are defined for the same set of arguments, and their values on this set coincide. Sometimes it is required in the definition of a universal function that for each $ i \in \mathbf N $ the function $ F ( i , x _ {1} \dots x _ {n} ) $ lies in $ K $( cf. [4]). There are a number of other variants of the definition of a universal function (cf. [1], [2]).
A universal function exists for every countable class of functions. The following universal functions play an important role in the theory of algorithms: 1) universal partial recursive functions for the class of all $ n $- place $ ( n \geq 0 ) $ partial recursive functions (cf. Partial recursive function); and 2) universal general recursive functions for the class of all $ n $- place primitive recursive functions (cf. Primitive recursive function).
If a function $ \psi ( y , x ) $ is universal for the class of all one-place partial recursive functions, then it cannot be extended to a total recursive function, and the set $ \{ {x } : {\psi ( x , x ) \textrm{ is defined } } \} $ is an example of a recursively-enumerable, but not recursive, set of natural numbers (cf. also Enumerable set).
References
| [1] | R. Peter, "Recursive functions" , Acad. Press (1967) (Translated from German) |
| [2] | S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951) |
| [3] | V.A. Uspenskii, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian) |
| [4] | A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian) |
Comments
References
| [a1] | H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) pp. 164–165 |
Universal function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Universal_function&oldid=14446