Difference between revisions of "Mathieu functions"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0627601.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/M062/M.0602760 Mathieu functions | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The $ 2 \pi $- | |
+ | periodic solutions of the [[Mathieu equation|Mathieu equation]] | ||
− | + | $$ | |
+ | |||
+ | \frac{d ^ {2} u }{dz ^ {2} } | ||
+ | + ( a + 16q \cos 2z) u = 0,\ \ | ||
+ | z \in \mathbf R , | ||
+ | $$ | ||
+ | |||
+ | which exist only when the point $ ( a, q) $ | ||
+ | in the parameter plane lies on the boundary of the stability zones. A Mathieu function is even or odd, and is unique up to a factor; the second linearly-independent solution grows linearly in $ z $ | ||
+ | for $ | z | \rightarrow \infty $, | ||
+ | provided $ q \neq 0 $. | ||
+ | The even Mathieu functions are the eigen functions of the integral equation | ||
+ | |||
+ | $$ | ||
+ | G( z) = \lambda \int\limits _ {- \pi } ^ \pi e ^ {k \cos z \cos t } G( t) dt,\ \ | ||
+ | k = \sqrt 32q . | ||
+ | $$ | ||
An analogous equation is satisfied by the odd Mathieu functions. The notation for Mathieu functions is: | An analogous equation is satisfied by the odd Mathieu functions. The notation for Mathieu functions is: | ||
− | + | $$ | |
+ | ce _ {0} ( z, q), ce _ {1} ( z, q) , . . . ; \ se _ {1} ( z, q) , se _ {2} ( z, q) , . . . . | ||
+ | $$ | ||
− | For | + | For $ q \rightarrow 0 $ |
+ | these functions reduce to the [[Trigonometric system|trigonometric system]] | ||
− | + | $$ | |
+ | 1 , \cos z , . . . ; \ \ | ||
+ | \sin z, \sin 2z \dots | ||
+ | $$ | ||
− | and they possess the same orthogonality properties on the interval | + | and they possess the same orthogonality properties on the interval $ (- \pi , \pi ) $. |
+ | The Mathieu functions admit Fourier-series expansions which converge for small $ | q | \leq r _ {n} $; | ||
+ | the coefficients of these series are convergent power series in $ q $, | ||
+ | for example, | ||
− | + | $$ | |
+ | ce _ {0} ( z, q) = \ | ||
+ | 1 + | ||
+ | $$ | ||
− | + | $$ | |
+ | + | ||
+ | \sum _{n=1} ^ \infty \left [ 2 ^ {n+1} | ||
+ | \frac{q ^ {n} }{( n!) | ||
+ | ^ {2} } | ||
+ | - | ||
+ | \frac{n( 3n+ 4) 2 ^ {n+3} q ^ {n+2} }{(( n+ 1)!) | ||
+ | ^ {2} } | ||
+ | + O( q ^ {n+4} ) \right ] \cos 2nz. | ||
+ | $$ | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Sansone, "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.W. Mac-Lachlan, "Theory and application of Mathieu functions" , Clarendon Press (1947)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Bateman (ed.) A. Erdélyi (ed.) , ''Higher transcendental functions'' , '''3. Automorphic functions''' , McGraw-Hill (1955)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G. Sansone, "Equazioni differenziali nel campo reale" , '''1''' , Zanichelli (1948)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> N.W. Mac-Lachlan, "Theory and application of Mathieu functions" , Clarendon Press (1947)</TD></TR> | ||
+ | </table> |
Latest revision as of 16:31, 6 January 2024
The $ 2 \pi $-
periodic solutions of the Mathieu equation
$$ \frac{d ^ {2} u }{dz ^ {2} } + ( a + 16q \cos 2z) u = 0,\ \ z \in \mathbf R , $$
which exist only when the point $ ( a, q) $ in the parameter plane lies on the boundary of the stability zones. A Mathieu function is even or odd, and is unique up to a factor; the second linearly-independent solution grows linearly in $ z $ for $ | z | \rightarrow \infty $, provided $ q \neq 0 $. The even Mathieu functions are the eigen functions of the integral equation
$$ G( z) = \lambda \int\limits _ {- \pi } ^ \pi e ^ {k \cos z \cos t } G( t) dt,\ \ k = \sqrt 32q . $$
An analogous equation is satisfied by the odd Mathieu functions. The notation for Mathieu functions is:
$$ ce _ {0} ( z, q), ce _ {1} ( z, q) , . . . ; \ se _ {1} ( z, q) , se _ {2} ( z, q) , . . . . $$
For $ q \rightarrow 0 $ these functions reduce to the trigonometric system
$$ 1 , \cos z , . . . ; \ \ \sin z, \sin 2z \dots $$
and they possess the same orthogonality properties on the interval $ (- \pi , \pi ) $. The Mathieu functions admit Fourier-series expansions which converge for small $ | q | \leq r _ {n} $; the coefficients of these series are convergent power series in $ q $, for example,
$$ ce _ {0} ( z, q) = \ 1 + $$
$$ + \sum _{n=1} ^ \infty \left [ 2 ^ {n+1} \frac{q ^ {n} }{( n!) ^ {2} } - \frac{n( 3n+ 4) 2 ^ {n+3} q ^ {n+2} }{(( n+ 1)!) ^ {2} } + O( q ^ {n+4} ) \right ] \cos 2nz. $$
References
[1] | E.T. Whittaker, G.N. Watson, "A course of modern analysis" , Cambridge Univ. Press (1952) pp. Chapt. 2 |
[2] | H. Bateman (ed.) A. Erdélyi (ed.) , Higher transcendental functions , 3. Automorphic functions , McGraw-Hill (1955) |
[3] | G. Sansone, "Equazioni differenziali nel campo reale" , 1 , Zanichelli (1948) |
[4] | M.J.O. Strett, "Lamésche-, Mathieusche- und verwandte Funktionen in Physik und Technik" , Springer (1932) |
[5] | N.W. Mac-Lachlan, "Theory and application of Mathieu functions" , Clarendon Press (1947) |
Mathieu functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mathieu_functions&oldid=14316