Difference between revisions of "Kirillov conjecture"
(Importing text file) |
m (typo) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Let | + | Let $F$ be a [[local field]] and $\pi$ an irreducible [[unitary representation]] of $\mathrm{GL}_n(F)$. Let |
+ | $$ | ||
+ | P_n(F) = \{ s \in \mathrm{GL}_n(F) : \text{last row}\,(s) = (0,0,\ldots,1) \} \ . | ||
+ | $$ | ||
− | + | Then $\pi(P_n(F))$ is irreducible (cf. also [[Irreducible representation]]). | |
− | |||
− | Then | ||
− | |||
− | |||
− | |||
− | |||
+ | A related conjecture is that for two irreducible representations $\pi_1$ and $\pi_2$ of, respectively, $\mathrm{GL}_{n_1}(F)$ and $\mathrm{GL}_{n_2}(F)$, the product | ||
+ | $$ | ||
+ | \pi_1 \pi_2 = \mathrm{Ind}_{\mathrm{GL}(n_1,F)\times\mathrm{GL}(n_2,F)}^{\mathrm{GL}(n_1+n_2,F)} | ||
+ | $$ | ||
is irreducible. | is irreducible. | ||
− | For | + | For $F$ non-Archimedean (cf. also [[Archimedean axiom]]), both conjectures are true (Bernstein's theorems). |
− | For | + | For $F = \mathbf{C}$, these conjectures have been proved by S. Sahi [[#References|[a1]]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Sahi, "On Kirillov's conjecture for Archimedean fields" ''Compositio Math.'' , '''72''' : 1 (1989) pp. 67–86</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Sahi, "On Kirillov's conjecture for Archimedean fields" ''Compositio Math.'' , '''72''' : 1 (1989) pp. 67–86 {{ZBL|0693.22006}}</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 08:10, 23 March 2018
Let $F$ be a local field and $\pi$ an irreducible unitary representation of $\mathrm{GL}_n(F)$. Let $$ P_n(F) = \{ s \in \mathrm{GL}_n(F) : \text{last row}\,(s) = (0,0,\ldots,1) \} \ . $$
Then $\pi(P_n(F))$ is irreducible (cf. also Irreducible representation).
A related conjecture is that for two irreducible representations $\pi_1$ and $\pi_2$ of, respectively, $\mathrm{GL}_{n_1}(F)$ and $\mathrm{GL}_{n_2}(F)$, the product $$ \pi_1 \pi_2 = \mathrm{Ind}_{\mathrm{GL}(n_1,F)\times\mathrm{GL}(n_2,F)}^{\mathrm{GL}(n_1+n_2,F)} $$ is irreducible.
For $F$ non-Archimedean (cf. also Archimedean axiom), both conjectures are true (Bernstein's theorems).
For $F = \mathbf{C}$, these conjectures have been proved by S. Sahi [a1].
References
[a1] | S. Sahi, "On Kirillov's conjecture for Archimedean fields" Compositio Math. , 72 : 1 (1989) pp. 67–86 Zbl 0693.22006 |
Kirillov conjecture. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kirillov_conjecture&oldid=14218