|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ''of a Riemannian manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817801.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817802.png" />''
| + | <!-- |
| + | r0817801.png |
| + | $#A+1 = 32 n = 0 |
| + | $#C+1 = 32 : ~/encyclopedia/old_files/data/R081/R.0801780 Ricci curvature |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A number corresponding to each one-dimensional subspace of the tangent space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817803.png" /> by the formula
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817804.png" /></td> </tr></table>
| + | ''of a Riemannian manifold $ M $ |
| + | at a point $ p \in M $'' |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817805.png" /> is the [[Ricci tensor|Ricci tensor]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817806.png" /> is a vector generating the one-dimensional subspace and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817807.png" /> is the [[Metric tensor|metric tensor]] of the [[Riemannian manifold|Riemannian manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817808.png" />. The Ricci curvature can be expressed in terms of the sectional curvatures of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r0817809.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178010.png" /> be the [[Sectional curvature|sectional curvature]] at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178011.png" /> in the direction of the surface element defined by the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178013.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178014.png" /> be normalized vectors orthogonal to each other and to the vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178015.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178016.png" /> be the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178017.png" />; then
| + | A number corresponding to each one-dimensional subspace of the tangent space $ M _ {p} $ |
| + | by the formula |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178018.png" /></td> </tr></table>
| + | $$ |
| + | r ( v) = \ |
| | | |
− | For manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178019.png" /> of dimension greater than two the following proposition is valid: If the Ricci curvature at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178020.png" /> has one and the same value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178021.png" /> in all directions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178022.png" />, then the Ricci curvature has one and the same value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178023.png" /> at all points of the manifold. Manifolds of constant Ricci curvature are called Einstein spaces. The Ricci tensor of an Einstein space is of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178025.png" /> is the Ricci curvature. For an Einstein space the following equality holds:
| + | \frac{( c R ) ( v , v ) }{g ( v , v ) } |
| + | , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178026.png" /></td> </tr></table>
| + | where $ c R $ |
| + | is the [[Ricci tensor|Ricci tensor]], $ v $ |
| + | is a vector generating the one-dimensional subspace and $ g $ |
| + | is the [[Metric tensor|metric tensor]] of the [[Riemannian manifold|Riemannian manifold]] $ M $. |
| + | The Ricci curvature can be expressed in terms of the sectional curvatures of $ M $. |
| + | Let $ K _ {p} ( \alpha , \beta ) $ |
| + | be the [[sectional curvature]] at the point $ p \in M $ |
| + | in the direction of the surface element defined by the vectors $ \alpha $ |
| + | and $ \beta $, |
| + | let $ l _ {1} \dots l_{n-1} $ |
| + | be normalized vectors orthogonal to each other and to the vector $ v $, |
| + | and let $ n $ |
| + | be the dimension of $ M $; |
| + | then |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178027.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178028.png" /> are the covariant and contravariant components of the Ricci tensor, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178029.png" /> is the dimension of the space and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178030.png" /> is the scalar curvature of the space.
| + | $$ |
| + | r(v) = \sum_{i=1}^{n-1} K_p (v, l_i) . |
| + | $$ |
| | | |
− | The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic.
| + | For manifolds $ M $ |
| + | of dimension greater than two the following proposition is valid: If the Ricci curvature at a point $ p \in M $ |
| + | has one and the same value $ r $ |
| + | in all directions $ v $, |
| + | then the Ricci curvature has one and the same value $ r $ |
| + | at all points of the manifold. Manifolds of constant Ricci curvature are called Einstein spaces. The Ricci tensor of an Einstein space is of the form $ c R = r g $, |
| + | where $ r $ |
| + | is the Ricci curvature. For an Einstein space the following equality holds: |
| | | |
− | From the Ricci curvature the Ricci tensor can be recovered uniquely:
| + | $$ |
| + | n R _ {ij} R ^ {ij} - s ^ {2} = 0 , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178031.png" /></td> </tr></table>
| + | where $ R _ {ij} $, |
| + | $ R ^ {ij} $ |
| + | are the covariant and contravariant components of the Ricci tensor, $ n $ |
| + | is the dimension of the space and $ s $ |
| + | is the scalar curvature of the space. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081780/r08178032.png" /></td> </tr></table>
| + | The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic. |
− | | |
− | ====References====
| |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian)</TD></TR></table>
| |
| | | |
| + | From the Ricci curvature the Ricci tensor can be recovered uniquely: |
| | | |
| + | $$ |
| + | ( c R ) ( u , v ) = |
| + | $$ |
| | | |
− | ====Comments==== | + | $$ |
| + | = \ |
| | | |
| + | \frac{1}{2} |
| + | [ r ( u + v ) g ( u + v , u + v ) |
| + | - r ( u) g ( u , u ) - r ( v) g ( v , v ) ] . |
| + | $$ |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR> |
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian)</TD></TR> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR> |
| + | </table> |
of a Riemannian manifold $ M $
at a point $ p \in M $
A number corresponding to each one-dimensional subspace of the tangent space $ M _ {p} $
by the formula
$$
r ( v) = \
\frac{( c R ) ( v , v ) }{g ( v , v ) }
,
$$
where $ c R $
is the Ricci tensor, $ v $
is a vector generating the one-dimensional subspace and $ g $
is the metric tensor of the Riemannian manifold $ M $.
The Ricci curvature can be expressed in terms of the sectional curvatures of $ M $.
Let $ K _ {p} ( \alpha , \beta ) $
be the sectional curvature at the point $ p \in M $
in the direction of the surface element defined by the vectors $ \alpha $
and $ \beta $,
let $ l _ {1} \dots l_{n-1} $
be normalized vectors orthogonal to each other and to the vector $ v $,
and let $ n $
be the dimension of $ M $;
then
$$
r(v) = \sum_{i=1}^{n-1} K_p (v, l_i) .
$$
For manifolds $ M $
of dimension greater than two the following proposition is valid: If the Ricci curvature at a point $ p \in M $
has one and the same value $ r $
in all directions $ v $,
then the Ricci curvature has one and the same value $ r $
at all points of the manifold. Manifolds of constant Ricci curvature are called Einstein spaces. The Ricci tensor of an Einstein space is of the form $ c R = r g $,
where $ r $
is the Ricci curvature. For an Einstein space the following equality holds:
$$
n R _ {ij} R ^ {ij} - s ^ {2} = 0 ,
$$
where $ R _ {ij} $,
$ R ^ {ij} $
are the covariant and contravariant components of the Ricci tensor, $ n $
is the dimension of the space and $ s $
is the scalar curvature of the space.
The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic.
From the Ricci curvature the Ricci tensor can be recovered uniquely:
$$
( c R ) ( u , v ) =
$$
$$
= \
\frac{1}{2}
[ r ( u + v ) g ( u + v , u + v )
- r ( u) g ( u , u ) - r ( v) g ( v , v ) ] .
$$
References
[1] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
[2] | A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian) |
[a1] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
[a2] | A.L. Besse, "Einstein manifolds" , Springer (1987) |