Ricci tensor
A twice-covariant tensor obtained from the Riemann tensor $ R^{l}_{jkl} $ by contracting the upper index with the first lower one: $$ R_{ki} = R^{m}_{mki}. $$
In a Riemannian space $ V_{n} $, the Ricci tensor is symmetric: $ R_{ki} = R_{ik} $. The trace of the Ricci tensor with respect to the contravariant metric tensor $ g^{ij} $ of the space $ V_{n} $ leads to a scalar, $ R = g^{ij} R_{ij} $, called the curvature invariant or the scalar curvature of $ V_{n} $. The components of the Ricci tensor can be expressed in terms of the metric tensor $ g_{ij} $ of the space $ V_{n} $: $$ R_{ij} = \frac{\partial^{2} \ln \sqrt{g}}{\partial x^{i} \partial x^{j}} - \frac{\partial}{\partial x^{k}} \Gamma^{k}_{ij} + \Gamma^{m}_{ik} \Gamma^{k}_{mj} - \Gamma^{m}_{ij} \frac{\partial \ln \sqrt{g}}{\partial x^{m}}, $$ where $ g = \det g_{ij} $ and $ \Gamma^{k}_{ij} $ are the Christoffel symbols of the second kind calculated with respect to the tensor $ g_{ij} $.
The tensor was introduced by G. Ricci in [1].
References
[1] | G. Ricci, “Atti R. Inst. Venelo”, 53: 2 (1903–1904), pp. 1233–1239. |
[2] | L.P. Eisenhart, “Riemannian geometry”, Princeton Univ. Press (1949). |
Comments
References
[a1] | S. Kobayashi and K. Nomizu, “Foundations of differential geometry”, 1, Interscience (1963). |
Ricci tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ricci_tensor&oldid=38665