Difference between revisions of "Hotelling-T^2-distribution"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
(details) |
||
Line 47: | Line 47: | ||
are independent, distributed as $ Y $ | are independent, distributed as $ Y $ | ||
and also independent of $ Y $, | and also independent of $ Y $, | ||
− | then the random variable $ T ^ {2} = Y ^ { \prime } S ^ {-} | + | then the random variable $ T ^ {2} = Y ^ { \prime } S ^ {-1} Y $ |
has the Hotelling $ T ^ {2} $- | has the Hotelling $ T ^ {2} $- | ||
distribution with $ n $ | distribution with $ n $ | ||
Line 84: | Line 84: | ||
T ^ {2} = \ | T ^ {2} = \ | ||
n ( \overline{X}\; - \mu ) ^ \prime | n ( \overline{X}\; - \mu ) ^ \prime | ||
− | S ^ {-} | + | S ^ {-1} ( \overline{X}\; - \mu ), |
$$ | $$ | ||
Line 90: | Line 90: | ||
$$ | $$ | ||
− | \overline{X}\; = { | + | \overline{X}\; = {\frac{1}{n} }\sum _ {i = 1 } ^ { n } X _ {i} $$ |
− | \frac{1}{n} | ||
− | |||
− | \sum _ {i = 1 } ^ { n } | ||
− | X _ {i} $$ | ||
and | and | ||
$$ | $$ | ||
− | S = { | + | S = {\frac{1}{n - 1 } } |
− | \frac{1}{n - 1 } | ||
− | |||
\sum _ {i = 1 } ^ { n } | \sum _ {i = 1 } ^ { n } | ||
( X _ {i} - \overline{X}\; ) | ( X _ {i} - \overline{X}\; ) | ||
Line 109: | Line 103: | ||
has the Hotelling $ T ^ {2} $- | has the Hotelling $ T ^ {2} $- | ||
distribution with $ n - 1 $ | distribution with $ n - 1 $ | ||
− | degrees of freedom. This fact forms the basis of the [[ | + | degrees of freedom. This fact forms the basis of the [[Hotelling test]]. For numerical calculations one uses tables of the [[Beta-distribution|beta-distribution]] or of the [[Fisher-F-distribution|Fisher $ F $- |
distribution]], because the random variable $ (( n - k + 1)/nk) T ^ {2} $ | distribution]], because the random variable $ (( n - k + 1)/nk) T ^ {2} $ | ||
has the $ F $- | has the $ F $- | ||
Line 120: | Line 114: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hotelling, "The generalization of Student's ratio" ''Ann. Math. Stat.'' , '''2''' (1931) pp. 360–378</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Hotelling, "The generalization of Student's ratio" ''Ann. Math. Stat.'' , '''2''' (1931) pp. 360–378</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR> | ||
+ | </table> |
Latest revision as of 19:08, 26 May 2024
The continuous probability distribution, concentrated on the positive semi-axis $ ( 0, \infty ) $,
with density
$$ p ( x) = \ \frac{\Gamma ( {( n + 1) / 2 } ) x ^ { {k / 2 } - 1 } ( 1 + {x / n } ) ^ {- {( n + 1) / 2 } } }{\Gamma ( {( n - k + 1) / 2 } ) \Gamma ( {k / 2 } ) n ^ { {k / 2 } } } , $$
depending on two integer parameters $ n $( the number of degrees of freedom) and $ k $, $ n \geq k \geq 1 $. For $ k = 1 $ the Hotelling $ T ^ {2} $- distribution reduces to the Student distribution, and for any $ k > 0 $ it can be regarded as a multivariate generalization of the Student distribution in the following sense. If a $ k $- dimensional random vector $ Y $ has the normal distribution with null vector of means and covariance matrix $ \Sigma $ and if
$$ S = { \frac{1}{n} } \sum _ {i = 1 } ^ { n } Z _ {i} ^ { \prime } Z _ {i} , $$
where the random vectors $ Z _ {i} $ are independent, distributed as $ Y $ and also independent of $ Y $, then the random variable $ T ^ {2} = Y ^ { \prime } S ^ {-1} Y $ has the Hotelling $ T ^ {2} $- distribution with $ n $ degrees of freedom ( $ Y $ is a column vector and $ {} ^ \prime $ means transposition). If $ k = 1 $, then
$$ T ^ {2} = \ \frac{Y ^ {2} }{\chi _ {n} ^ {2} /n } = \ t _ {n} ^ {2} , $$
where the random variable $ t _ {n} $ has the Student distribution with $ n $ degrees of freedom. If in the definition of the random variable $ T ^ {2} $ it is assumed that $ Y $ has the normal distribution with parameters $ ( \nu , \Sigma ) $ and $ Z _ {i} $ has the normal distribution with parameters $ ( 0, \Sigma ) $, then the corresponding distribution is called a non-central Hotelling $ T ^ {2} $- distribution with $ n $ degrees of freedom and non-centrality parameter $ \nu $.
Hotelling's $ T ^ {2} $- distribution is used in mathematical statistics in the same situation as Student's $ t $- distribution, but then in the multivariate case (see Multi-dimensional statistical analysis). If the results of observations $ X _ {1} \dots X _ {n} $ are independent normally-distributed random vectors with mean vector $ \nu $ and non-degenerate covariance matrix $ \Sigma $, then the statistic
$$ T ^ {2} = \ n ( \overline{X}\; - \mu ) ^ \prime S ^ {-1} ( \overline{X}\; - \mu ), $$
where
$$ \overline{X}\; = {\frac{1}{n} }\sum _ {i = 1 } ^ { n } X _ {i} $$
and
$$ S = {\frac{1}{n - 1 } } \sum _ {i = 1 } ^ { n } ( X _ {i} - \overline{X}\; ) ( X _ {i} - \overline{X}\; ) ^ \prime , $$
has the Hotelling $ T ^ {2} $- distribution with $ n - 1 $ degrees of freedom. This fact forms the basis of the Hotelling test. For numerical calculations one uses tables of the beta-distribution or of the Fisher $ F $- distribution, because the random variable $ (( n - k + 1)/nk) T ^ {2} $ has the $ F $- distribution with $ k $ and $ n - k + 1 $ degrees of freedom.
The Hotelling $ T ^ {2} $- distribution was proposed by H. Hotelling [1] for testing equality of means of two normal populations.
References
[1] | H. Hotelling, "The generalization of Student's ratio" Ann. Math. Stat. , 2 (1931) pp. 360–378 |
[2] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984) |
Hotelling-T^2-distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hotelling-T%5E2-distribution&oldid=47274