Difference between revisions of "Parametrix method"
Ulf Rehmann (talk | contribs) m (Undo revision 48129 by Ulf Rehmann (talk)) Tag: Undo |
(→References: zbl link) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | p0715701.png | ||
| + | $#A+1 = 72 n = 0 | ||
| + | $#C+1 = 72 : ~/encyclopedia/old_files/data/P071/P.0701570 Parametrix method | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations. | One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations. | ||
| − | Suppose that in some region | + | Suppose that in some region $ G $ |
| + | of the $ n $- | ||
| + | dimensional Euclidean space $ \mathbf R ^ {n} $ | ||
| + | one considers an elliptic differential operator (cf. [[Elliptic partial differential equation|Elliptic partial differential equation]]) of order $ m $, | ||
| − | + | $$ \tag{1 } | |
| + | L( x, D) = \sum _ {| \alpha | \leq m } a _ \alpha ( x) D ^ \alpha . | ||
| + | $$ | ||
| − | In (1) the symbol | + | In (1) the symbol $ \alpha $ |
| + | is a multi-index, $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $, | ||
| + | where the $ \alpha _ {j} $ | ||
| + | are non-negative integers, $ | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} $, | ||
| + | $ D ^ \alpha = D _ {1} ^ {\alpha _ {1} } \dots D _ {n} ^ {\alpha _ {n} } $, | ||
| + | $ D _ {j} = - i \partial / \partial x _ {j} $. | ||
| + | With every operator (1) there is associated the homogeneous elliptic operator | ||
| − | + | $$ | |
| + | L _ {0} ( x _ {0} , D) = \sum _ {| \alpha | = m } a _ \alpha ( x _ {0} ) D | ||
| + | ^ \alpha | ||
| + | $$ | ||
| − | with constant coefficients, where | + | with constant coefficients, where $ x _ {0} \in G $ |
| + | is an arbitrary fixed point. Let $ \epsilon ( x, x _ {0} ) $ | ||
| + | denote a [[Fundamental solution|fundamental solution]] of $ L _ {0} ( x _ {0} , D) $ | ||
| + | depending parametrically on $ x _ {0} $. | ||
| + | Then the function $ \epsilon ( x , x _ {0} ) $ | ||
| + | is called the parametrix of the operator (1) with a singularity at $ x _ {0} $. | ||
In particular, for the second-order elliptic operator | In particular, for the second-order elliptic operator | ||
| − | + | $$ | |
| + | L( x, D) = \sum _ {i,j= 1 } ^ { n } a _ {ij} ( x) | ||
| + | \frac{\partial ^ {2} }{\partial | ||
| + | x _ {i} \partial x _ {j} } | ||
| + | + \sum _ { i= } 1 ^ { n } b _ {i} ( x) | ||
| + | \frac \partial {\partial | ||
| + | x _ {i} } | ||
| + | + c ( x) | ||
| + | $$ | ||
| + | |||
| + | one can take as parametrix with singularity at $ y $ | ||
| + | the Levi function | ||
| + | |||
| + | $$ \tag{2 } | ||
| + | \epsilon ( x, y) = \left \{ | ||
| + | |||
| + | \begin{array}{ll} | ||
| + | |||
| + | \frac{1}{( n- 2) \omega _ {n} \sqrt {A( y) } } | ||
| + | [ R( x, y)] ^ {2-} n , & n > 2, \\ | ||
| − | + | \frac{1}{2 \pi \sqrt A( y) } | |
| + | \mathop{\rm ln} R( x, y) , & n = 2 . \\ | ||
| + | \end{array} | ||
| − | + | \right .$$ | |
| − | In (2), | + | In (2), $ \omega _ {n} = 2 \pi ^ {n/2} / \Gamma ( n/2) $, |
| + | $ A( y) $ | ||
| + | is the determinant of the matrix $ \| \alpha _ {ij} ( y) \| $, | ||
| − | + | $$ | |
| + | R( x, y) = \sum _ { i,j= } 1 ^ { {n } } A _ {ij} ( y)( x _ {i} - y _ {i} )( x _ {j} - y _ {j} ), | ||
| + | $$ | ||
| − | and | + | and $ A _ {ij} ( y) $ |
| + | are the elements of the matrix inverse to $ \| \alpha _ {ij} ( y) \| $. | ||
| − | Let | + | Let $ S _ {x _ {0} } $ |
| + | be the integral operator | ||
| − | + | $$ \tag{3 } | |
| + | ( S _ {x _ {0} } \phi )( x) = \int\limits _ { G } \epsilon ( x- y, x _ {0} ) \phi ( y) dy , | ||
| + | $$ | ||
| − | acting on functions from | + | acting on functions from $ C _ {0} ^ \infty ( G) $ |
| + | and let | ||
| − | + | $$ | |
| + | T _ {x _ {0} } = S _ {x _ {0} } [ L _ {0} ( x _ {0} , D) - L( x, D)] . | ||
| + | $$ | ||
Since, by definition of a fundamental solution, | Since, by definition of a fundamental solution, | ||
| − | + | $$ | |
| + | L _ {0} ( x _ {0} , D) S _ {x _ {0} } = S _ {x _ {0} } L _ {0} ( x _ {0} , D) | ||
| + | = I, | ||
| + | $$ | ||
| − | where | + | where $ I $ |
| + | is the identity operator, one has | ||
| − | + | $$ | |
| + | I = S _ {x _ {0} } L( x, D) + T _ {x _ {0} } . | ||
| + | $$ | ||
| − | This equality indicates that for every sufficiently-smooth function | + | This equality indicates that for every sufficiently-smooth function $ \phi $ |
| + | of compact support in $ G $ | ||
| + | there is a representation | ||
| − | + | $$ \tag{4 } | |
| + | \phi = S _ {x _ {0} } L ( x, D) \phi + T _ {x _ {0} } \phi . | ||
| + | $$ | ||
Moreover, if | Moreover, if | ||
| − | + | $$ | |
| + | \phi = S _ {x _ {0} } f + T _ {x _ {0} } \phi , | ||
| + | $$ | ||
| − | then | + | then $ \phi $ |
| + | is a solution of the equation | ||
| − | + | $$ | |
| + | L( x, D) \phi = f. | ||
| + | $$ | ||
| − | Thus, the question of the local solvability of | + | Thus, the question of the local solvability of $ L _ \phi = f $ |
| + | reduces to that of invertibility of $ I- T _ {x _ {0} } $. | ||
| − | If one applies | + | If one applies $ T _ {x _ {0} } $ |
| + | to functions $ \phi $ | ||
| + | that vanish outside a ball of radius $ R $ | ||
| + | with centre at $ x _ {0} $, | ||
| + | then for a sufficiently small $ R $ | ||
| + | the norm of $ T _ {x _ {0} } $ | ||
| + | can be made smaller than one. Then the operator $ ( I- T _ {x _ {0} } ) ^ {-} 1 $ | ||
| + | exists; consequently, also $ E = ( I- T _ {x _ {0} } ) ^ {-} 1 S _ {x _ {0} } $ | ||
| + | exists, which is the inverse operator to $ L( x, D) $. | ||
| + | Here $ E $ | ||
| + | is an integral operator with as kernel a fundamental solution of $ L( x, D) $. | ||
| − | The name parametrix is sometimes given not only to the function | + | The name parametrix is sometimes given not only to the function $ \epsilon ( x, x _ {0} ) $, |
| + | but also to the integral operator $ S _ {x _ {0} } $ | ||
| + | with the kernel $ \epsilon ( x, x _ {0} ) $, | ||
| + | as defined by (3). | ||
| − | In the theory of pseudo-differential operators, instead of | + | In the theory of pseudo-differential operators, instead of $ S _ {x _ {0} } $ |
| + | a parametrix of $ L( x, D) $ | ||
| + | is defined as an operator $ S $ | ||
| + | such that $ I- L( x, D) S $ | ||
| + | and $ I- SL( x, D) $ | ||
| + | are integral operators with infinitely-differentiable kernels (cf. [[Pseudo-differential operator|Pseudo-differential operator]]). If only $ I- SL $( | ||
| + | or $ I- LS $) | ||
| + | is such an operator, then $ S $ | ||
| + | is called a left (or right) parametrix of $ L( x, D) $. | ||
| + | In other words, $ S _ {x _ {0} } $ | ||
| + | in (4) is a left parametrix if $ T _ {x _ {0} } $ | ||
| + | in this equality has an infinitely-differentiable kernel. If $ L( x, D) $ | ||
| + | has a left parametrix $ S ^ \prime $ | ||
| + | and a right parametrix $ S ^ {\prime\prime} $, | ||
| + | then each of them is a parametrix. The existence of a parametrix has been proved for hypo-elliptic pseudo-differential operators (see [[#References|[3]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Hörmander, , ''Pseudo-differential operators'' , Moscow (1967) (In Russian; translated from English)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Hörmander, , ''Pseudo-differential operators'' , Moscow (1967) (In Russian; translated from English)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The operator | + | The operator $ L _ {0} ( x, D) $ |
| + | is called the principal part of $ L $, | ||
| + | cf. [[Principal part of a differential operator|Principal part of a differential operator]]. The parametrix method was anticipated in two fundamental papers by E.E. Levi [[#References|[a1]]], [[#References|[a2]]]. The same procedure is also applicable for constructing the fundamental solution of a parabolic equation with variable coefficients (see, e.g., [[#References|[a3]]]). | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" ''Rend. R. Acc. Lincei, Classe Sci. (V)'' , '''16''' (1907)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" ''Rend. Circ. Mat. Palermo'' , '''24''' (1907) pp. 275–317</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985) pp. Chapts. 7; 18</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" ''Rend. R. Acc. Lincei, Classe Sci. (V)'' , '''16''' (1907)</TD></TR> | ||
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" ''Rend. Circ. Mat. Palermo'' , '''24''' (1907) pp. 275–317 {{ZBL|38.0402.01}}</TD></TR> | ||
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)</TD></TR> | ||
| + | <TR><TD valign="top">[a4]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985) pp. Chapts. 7; 18</TD></TR> | ||
| + | </table> | ||
Latest revision as of 18:05, 22 May 2024
One of the methods for studying boundary value problems for differential equations with variable coefficients by means of integral equations.
Suppose that in some region $ G $ of the $ n $- dimensional Euclidean space $ \mathbf R ^ {n} $ one considers an elliptic differential operator (cf. Elliptic partial differential equation) of order $ m $,
$$ \tag{1 } L( x, D) = \sum _ {| \alpha | \leq m } a _ \alpha ( x) D ^ \alpha . $$
In (1) the symbol $ \alpha $ is a multi-index, $ \alpha = ( \alpha _ {1} \dots \alpha _ {n} ) $, where the $ \alpha _ {j} $ are non-negative integers, $ | \alpha | = \alpha _ {1} + \dots + \alpha _ {n} $, $ D ^ \alpha = D _ {1} ^ {\alpha _ {1} } \dots D _ {n} ^ {\alpha _ {n} } $, $ D _ {j} = - i \partial / \partial x _ {j} $. With every operator (1) there is associated the homogeneous elliptic operator
$$ L _ {0} ( x _ {0} , D) = \sum _ {| \alpha | = m } a _ \alpha ( x _ {0} ) D ^ \alpha $$
with constant coefficients, where $ x _ {0} \in G $ is an arbitrary fixed point. Let $ \epsilon ( x, x _ {0} ) $ denote a fundamental solution of $ L _ {0} ( x _ {0} , D) $ depending parametrically on $ x _ {0} $. Then the function $ \epsilon ( x , x _ {0} ) $ is called the parametrix of the operator (1) with a singularity at $ x _ {0} $.
In particular, for the second-order elliptic operator
$$ L( x, D) = \sum _ {i,j= 1 } ^ { n } a _ {ij} ( x) \frac{\partial ^ {2} }{\partial x _ {i} \partial x _ {j} } + \sum _ { i= } 1 ^ { n } b _ {i} ( x) \frac \partial {\partial x _ {i} } + c ( x) $$
one can take as parametrix with singularity at $ y $ the Levi function
$$ \tag{2 } \epsilon ( x, y) = \left \{ \begin{array}{ll} \frac{1}{( n- 2) \omega _ {n} \sqrt {A( y) } } [ R( x, y)] ^ {2-} n , & n > 2, \\ \frac{1}{2 \pi \sqrt A( y) } \mathop{\rm ln} R( x, y) , & n = 2 . \\ \end{array} \right .$$
In (2), $ \omega _ {n} = 2 \pi ^ {n/2} / \Gamma ( n/2) $, $ A( y) $ is the determinant of the matrix $ \| \alpha _ {ij} ( y) \| $,
$$ R( x, y) = \sum _ { i,j= } 1 ^ { {n } } A _ {ij} ( y)( x _ {i} - y _ {i} )( x _ {j} - y _ {j} ), $$
and $ A _ {ij} ( y) $ are the elements of the matrix inverse to $ \| \alpha _ {ij} ( y) \| $.
Let $ S _ {x _ {0} } $ be the integral operator
$$ \tag{3 } ( S _ {x _ {0} } \phi )( x) = \int\limits _ { G } \epsilon ( x- y, x _ {0} ) \phi ( y) dy , $$
acting on functions from $ C _ {0} ^ \infty ( G) $ and let
$$ T _ {x _ {0} } = S _ {x _ {0} } [ L _ {0} ( x _ {0} , D) - L( x, D)] . $$
Since, by definition of a fundamental solution,
$$ L _ {0} ( x _ {0} , D) S _ {x _ {0} } = S _ {x _ {0} } L _ {0} ( x _ {0} , D) = I, $$
where $ I $ is the identity operator, one has
$$ I = S _ {x _ {0} } L( x, D) + T _ {x _ {0} } . $$
This equality indicates that for every sufficiently-smooth function $ \phi $ of compact support in $ G $ there is a representation
$$ \tag{4 } \phi = S _ {x _ {0} } L ( x, D) \phi + T _ {x _ {0} } \phi . $$
Moreover, if
$$ \phi = S _ {x _ {0} } f + T _ {x _ {0} } \phi , $$
then $ \phi $ is a solution of the equation
$$ L( x, D) \phi = f. $$
Thus, the question of the local solvability of $ L _ \phi = f $ reduces to that of invertibility of $ I- T _ {x _ {0} } $.
If one applies $ T _ {x _ {0} } $ to functions $ \phi $ that vanish outside a ball of radius $ R $ with centre at $ x _ {0} $, then for a sufficiently small $ R $ the norm of $ T _ {x _ {0} } $ can be made smaller than one. Then the operator $ ( I- T _ {x _ {0} } ) ^ {-} 1 $ exists; consequently, also $ E = ( I- T _ {x _ {0} } ) ^ {-} 1 S _ {x _ {0} } $ exists, which is the inverse operator to $ L( x, D) $. Here $ E $ is an integral operator with as kernel a fundamental solution of $ L( x, D) $.
The name parametrix is sometimes given not only to the function $ \epsilon ( x, x _ {0} ) $, but also to the integral operator $ S _ {x _ {0} } $ with the kernel $ \epsilon ( x, x _ {0} ) $, as defined by (3).
In the theory of pseudo-differential operators, instead of $ S _ {x _ {0} } $ a parametrix of $ L( x, D) $ is defined as an operator $ S $ such that $ I- L( x, D) S $ and $ I- SL( x, D) $ are integral operators with infinitely-differentiable kernels (cf. Pseudo-differential operator). If only $ I- SL $( or $ I- LS $) is such an operator, then $ S $ is called a left (or right) parametrix of $ L( x, D) $. In other words, $ S _ {x _ {0} } $ in (4) is a left parametrix if $ T _ {x _ {0} } $ in this equality has an infinitely-differentiable kernel. If $ L( x, D) $ has a left parametrix $ S ^ \prime $ and a right parametrix $ S ^ {\prime\prime} $, then each of them is a parametrix. The existence of a parametrix has been proved for hypo-elliptic pseudo-differential operators (see [3]).
References
| [1] | L. Bers, F. John, M. Schechter, "Partial differential equations" , Interscience (1964) |
| [2] | C. Miranda, "Partial differential equations of elliptic type" , Springer (1970) (Translated from Italian) |
| [3] | L. Hörmander, , Pseudo-differential operators , Moscow (1967) (In Russian; translated from English) |
Comments
The operator $ L _ {0} ( x, D) $ is called the principal part of $ L $, cf. Principal part of a differential operator. The parametrix method was anticipated in two fundamental papers by E.E. Levi [a1], [a2]. The same procedure is also applicable for constructing the fundamental solution of a parabolic equation with variable coefficients (see, e.g., [a3]).
References
| [a1] | E.E. Levi, "Sulle equazioni lineari alle derivate parziali totalmente ellittiche" Rend. R. Acc. Lincei, Classe Sci. (V) , 16 (1907) |
| [a2] | E.E. Levi, "Sulle equazioni lineari totalmente ellittiche alle derivate parziali" Rend. Circ. Mat. Palermo , 24 (1907) pp. 275–317 Zbl 38.0402.01 |
| [a3] | A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964) |
| [a4] | L.V. Hörmander, "The analysis of linear partial differential operators" , 1–4 , Springer (1983–1985) pp. Chapts. 7; 18 |
Parametrix method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Parametrix_method&oldid=49355