|
|
(4 intermediate revisions by one other user not shown) |
Line 1: |
Line 1: |
| + | |
| ''of order $m$'' | | ''of order $m$'' |
| | | |
− | A [[Young diagram]] of order $m$ in whose cells the different numbers $1,\ldots,m$ have been inserted in some order, e.g. | + | A [[Young diagram]] of order $m$ in whose cells the different numbers $1,\ldots,m$ have been inserted in some order, ''e.g.'' |
− | $$
| + | |
− | \fbox{5,7,9,4|8,2,1|3|6}
| + | <pre style="font-family: monospace;color:black"> |
− | $$
| + | ┌───┬───┬───┬───┐ |
| + | │ 5 │ 7 │ 9 │ 4 │ |
| + | ├───┼───┼───┼───┘ |
| + | │ 8 │ 2 │ 1 │ |
| + | ├───┼───┴───┘ |
| + | │ 3 │ |
| + | ├───┤ |
| + | │ 6 │ |
| + | └───┘ |
| + | </pre> |
| | | |
− | A Young tableau is called standard if in each row and in each column the numbers occur in increasing order. The number of all Young tableau for a given Young diagram $t$ of order $m$ is equal to $m!$ and the number of standard Young tableaux is | + | A Young tableau is called standard if in each row and in each column the numbers occur in increasing order. The number of all Young tableaux for a given Young diagram $t$ of order $m$ is equal to $m!$ and the number of standard Young tableaux is |
| $$ | | $$ |
| \frac{m!}{\prod\lambda_{ij}} | | \frac{m!}{\prod\lambda_{ij}} |
Line 16: |
Line 26: |
| In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase "Young tableau" ( "Yunga tablitsa" ) and "Young diagram" ( "Yunga diagramma" ) are used precisely in the opposite way, with "tablitsa" referring to the pictorial representation of a partition and "diagramma" being a filled-in "tablitsa" . | | In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase "Young tableau" ( "Yunga tablitsa" ) and "Young diagram" ( "Yunga diagramma" ) are used precisely in the opposite way, with "tablitsa" referring to the pictorial representation of a partition and "diagramma" being a filled-in "tablitsa" . |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910013.png" /> denote a [[Partition|partition]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910014.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910017.png" />) as well as its corresponding [[Young diagram|Young diagram]], its pictorial representation. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910018.png" /> be a second partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910019.png" />. A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910022.png" />-tableau of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910023.png" /> is a Young diagram <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910024.png" /> with its boxes filled with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910026.png" />'s, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910027.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910028.png" />'s, etc. For a semi-standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910031.png" />-tableau of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910032.png" /> the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g. | + | Let $\kappa$ denote a [[partition]] of $m$ ($\kappa=(\kappa_1,\ldots,\kappa_t)$, $\kappa_i \in \{0,1,\ldots\}$, $\kappa_1+\cdots+\kappa_t=m$) as well as its corresponding [[Young diagram]], its pictorial representation. Let $\lambda$ be a second partition of $m$. A $\kappa$-tableau of type $\lambda$ is a Young diagram $\kappa$ with its boxes filled with $\lambda_1$ $1$'s, $\lambda_2$ $2$'s, etc. For a semi-standard $\kappa$-tableau of type $\lambda$, the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910033.png" /></td> </tr></table> | + | <pre style="font-family: monospace;color:black"> |
| + | ┌───┬───┬───┬───┬───┐ |
| + | │ 1 │ 1 │ 1 │ 1 │ 4 │ |
| + | ├───┼───┼───┼───┴───┘ |
| + | │ 2 │ 2 │ 3 │ |
| + | ├───┼───┼───┘ |
| + | │ 3 │ 4 │ |
| + | └───┴───┘ |
| + | </pre> |
| | | |
− | is a semi-standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910034.png" />-tableau of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910035.png" />. The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910036.png" /> of semi-standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910037.png" />-tableaux of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910038.png" /> are called Kostka numbers. | + | is a semi-standard $(5,3,2)$-tableau of type $(4,2,2,2)$. The numbers $K(\kappa,\lambda)$ of semi-standard $\kappa$-tableaux of type $\lambda$ are called Kostka numbers. |
| | | |
− | To each partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910040.png" /> there are associated two "natural" representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910041.png" />, the symmetric group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910042.png" /> letters: the induced representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910043.png" /> and the Specht module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910044.png" />. The representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910045.png" /> is: | + | To each partition $\mu$ of $n$, there are associated two "natural" representations of $S_n$, the symmetric group on $n$ letters: the induced representation $\rho(\mu)$ and the Specht module $[\mu]$. The representation $\rho(u)$ is: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910046.png" /></td> </tr></table>
| + | $$ |
| + | \rho(\mu) = \operatorname{Ind}_{G_\mu}^{S_n} 1, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910047.png" /> is the [[trivial representation]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910049.png" /> is the Young subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910050.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910052.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910053.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910054.png" /> and otherwise <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910055.png" /> is the subgroup of permutations on the letters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910056.png" />. | + | where $1$ is the [[trivial representation]] of $G_\mu$ and $G_\mu$ is the Young subgroup of $S_n$ determined by $\mu$, $G_\mu = S_{\mu_1} \times \cdots \times S_{\mu_m}$, where $S_{\mu_i} = \{1\}$ if $\mu_i = 0$ and otherwise $S_{\mu_i}$ is the subgroup of permutations on the letters $\mu_1 + \dots + \mu_{i-1} + 1, \ldots, \mu_1 + \dots + \mu_i$. |
| | | |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910057.png" /> acts on the set of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910059.png" />-tableaux by permuting the labels. Two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910060.png" />-tableaux are equivalent if they differ by a permutation of their labels keeping the sets of indices in each row set-wise invariant. An equivalence class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910061.png" />-tableaux is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910062.png" />-tabloid. The action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910063.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910064.png" />-tableaux induces an action on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910065.png" />-tabloids, and extending this linearly over a base field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910066.png" /> gives a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910067.png" /> which is evidently isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910068.png" />. The dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910069.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910070.png" />. Given a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910071.png" />-tableau <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910072.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910073.png" /> be the following element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910074.png" />: | + | The group $S_n$ acts on the set of all $\mu$-tableaux by permuting the labels. Two $\mu$-tableaux are equivalent if they differ by a permutation of their labels keeping the sets of indices in each row set-wise invariant. An equivalence class of $\mu$-tableaux is a $\mu$-tabloid. The action of $S_n$ on $\mu$-tableaux induces an action on $\mu$-tabloids, and extending this linearly over a base field $F$ gives a representation of $S_n$ which is evidently isomorphic to $\rho(\mu)$. The dimension of $\rho(\mu)$ is $(\square_\mu^n)$. Given a $\mu$-tableau $t$, let $\kappa_\tau$ be the following element of $F[S_n]$: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910075.png" /></td> </tr></table>
| + | $$ |
| + | \kappa_t = \sum_{\pi \in C_t} \operatorname{sign}(\pi) \pi, |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910076.png" /> is the column-stabilizer of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910077.png" />, i.e. the subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910078.png" /> of all permutations that leave the labels of the columns of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910079.png" /> set-wise invariant. | + | where $C_t$ is the column-stabilizer of $t$, i.e. the subgroup of $S_n$ of all permutations that leave the labels of the columns of $t$ set-wise invariant. |
| | | |
− | The Specht module, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910080.png" />, of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910081.png" /> is the submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910082.png" /> spanned by all the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910083.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910084.png" /> is the tabloid of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910085.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910086.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910087.png" />-tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910088.png" />. By Young's rule, the number of times that the Specht module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910089.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910090.png" /> occurs (as a composition factor) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910091.png" /> is equal to the Kostka number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910092.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910093.png" /> is the [[Young symmetrizer|Young symmetrizer]] of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910094.png" />-tableau <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910095.png" />, then the Specht module defined by the underlying diagram is isomorphic to the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910096.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910097.png" />. This is also (up to isomorphism) the representation denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099100/y09910098.png" /> in [[Representation of the symmetric groups|Representation of the symmetric groups]]. Cf. [[Majorization ordering|Majorization ordering]] for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups. | + | The Specht module, $[\mu]$, of $\mu$ is the submodule of $\rho(\mu)$ spanned by all the elements $\kappa_t\{t\}$, where $\{t\}$ is the tabloid of $t$ and $t$ is a $\mu$-tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of $S_n$. By Young's rule, the number of times that the Specht module $[\lambda]$ over $\mathbf{Q}$ occurs (as a composition factor) in $\rho(\kappa)$ is equal to the Kostka number $K(\kappa,\lambda)$. If $e_t$ is the [[Young symmetrizer]] of a $\mu$-tableau $t$, then the Specht module defined by the underlying diagram is isomorphic to the ideal $F[S_n]e_t$ of $F[S_n]$. This is also (up to isomorphism) the representation denoted by $T_{\mu}$ in [[Representation of the symmetric groups]]. Cf. [[Majorization ordering]] for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Knuth, "The art of computer programming" , '''3''' , Addison-Wesley (1973)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Knuth, "The art of computer programming" , '''3''' , Addison-Wesley (1973)</TD></TR> |
| + | </table> |
| | | |
− | {{TEX|want}} | + | {{TEX|done}} |
of order $m$
A Young diagram of order $m$ in whose cells the different numbers $1,\ldots,m$ have been inserted in some order, e.g.
┌───┬───┬───┬───┐
│ 5 │ 7 │ 9 │ 4 │
├───┼───┼───┼───┘
│ 8 │ 2 │ 1 │
├───┼───┴───┘
│ 3 │
├───┤
│ 6 │
└───┘
A Young tableau is called standard if in each row and in each column the numbers occur in increasing order. The number of all Young tableaux for a given Young diagram $t$ of order $m$ is equal to $m!$ and the number of standard Young tableaux is
$$
\frac{m!}{\prod\lambda_{ij}}
$$
where the product extends over all the cells $c_{ij}$ of $t$ and $\lambda_{ij}$ denotes the length of the corresponding hook.
In Western literature the phrase Ferrers diagram is also used for a Young diagram. In the Russian literature the phrase "Young tableau" ( "Yunga tablitsa" ) and "Young diagram" ( "Yunga diagramma" ) are used precisely in the opposite way, with "tablitsa" referring to the pictorial representation of a partition and "diagramma" being a filled-in "tablitsa" .
Let $\kappa$ denote a partition of $m$ ($\kappa=(\kappa_1,\ldots,\kappa_t)$, $\kappa_i \in \{0,1,\ldots\}$, $\kappa_1+\cdots+\kappa_t=m$) as well as its corresponding Young diagram, its pictorial representation. Let $\lambda$ be a second partition of $m$. A $\kappa$-tableau of type $\lambda$ is a Young diagram $\kappa$ with its boxes filled with $\lambda_1$ $1$'s, $\lambda_2$ $2$'s, etc. For a semi-standard $\kappa$-tableau of type $\lambda$, the labelling of the boxes is such that the rows are non-decreasing (from left to right) and the columns are strictly increasing (from top to bottom). E.g.
┌───┬───┬───┬───┬───┐
│ 1 │ 1 │ 1 │ 1 │ 4 │
├───┼───┼───┼───┴───┘
│ 2 │ 2 │ 3 │
├───┼───┼───┘
│ 3 │ 4 │
└───┴───┘
is a semi-standard $(5,3,2)$-tableau of type $(4,2,2,2)$. The numbers $K(\kappa,\lambda)$ of semi-standard $\kappa$-tableaux of type $\lambda$ are called Kostka numbers.
To each partition $\mu$ of $n$, there are associated two "natural" representations of $S_n$, the symmetric group on $n$ letters: the induced representation $\rho(\mu)$ and the Specht module $[\mu]$. The representation $\rho(u)$ is:
$$
\rho(\mu) = \operatorname{Ind}_{G_\mu}^{S_n} 1,
$$
where $1$ is the trivial representation of $G_\mu$ and $G_\mu$ is the Young subgroup of $S_n$ determined by $\mu$, $G_\mu = S_{\mu_1} \times \cdots \times S_{\mu_m}$, where $S_{\mu_i} = \{1\}$ if $\mu_i = 0$ and otherwise $S_{\mu_i}$ is the subgroup of permutations on the letters $\mu_1 + \dots + \mu_{i-1} + 1, \ldots, \mu_1 + \dots + \mu_i$.
The group $S_n$ acts on the set of all $\mu$-tableaux by permuting the labels. Two $\mu$-tableaux are equivalent if they differ by a permutation of their labels keeping the sets of indices in each row set-wise invariant. An equivalence class of $\mu$-tableaux is a $\mu$-tabloid. The action of $S_n$ on $\mu$-tableaux induces an action on $\mu$-tabloids, and extending this linearly over a base field $F$ gives a representation of $S_n$ which is evidently isomorphic to $\rho(\mu)$. The dimension of $\rho(\mu)$ is $(\square_\mu^n)$. Given a $\mu$-tableau $t$, let $\kappa_\tau$ be the following element of $F[S_n]$:
$$
\kappa_t = \sum_{\pi \in C_t} \operatorname{sign}(\pi) \pi,
$$
where $C_t$ is the column-stabilizer of $t$, i.e. the subgroup of $S_n$ of all permutations that leave the labels of the columns of $t$ set-wise invariant.
The Specht module, $[\mu]$, of $\mu$ is the submodule of $\rho(\mu)$ spanned by all the elements $\kappa_t\{t\}$, where $\{t\}$ is the tabloid of $t$ and $t$ is a $\mu$-tableau. Over a field of characteristic zero the Specht modules give precisely all the different absolutely-irreducible representations of $S_n$. By Young's rule, the number of times that the Specht module $[\lambda]$ over $\mathbf{Q}$ occurs (as a composition factor) in $\rho(\kappa)$ is equal to the Kostka number $K(\kappa,\lambda)$. If $e_t$ is the Young symmetrizer of a $\mu$-tableau $t$, then the Specht module defined by the underlying diagram is isomorphic to the ideal $F[S_n]e_t$ of $F[S_n]$. This is also (up to isomorphism) the representation denoted by $T_{\mu}$ in Representation of the symmetric groups. Cf. Majorization ordering for a number of other results involving partitions, Young diagrams and tableaux, and representations of the symmetric groups.
References
[a1] | D. Knuth, "The art of computer programming" , 3 , Addison-Wesley (1973) |