Difference between revisions of "Mean-square approximation of a function"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0631701.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/M063/M.0603170 Mean\AAhsquare approximation of a function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | where | + | An approximation of a function $ f( t) $ |
+ | by a function $ \phi ( t) $, | ||
+ | where the error measure $ \mu ( f; \phi ) $ | ||
+ | is defined by the formula | ||
+ | |||
+ | $$ | ||
+ | \mu _ \sigma ( f; \phi ) = \int\limits _ { a } ^ { b } [ f( t) - \phi( t)] ^ {2} d \sigma | ||
+ | ( t), | ||
+ | $$ | ||
+ | |||
+ | where $ \sigma ( t) $ | ||
+ | is a non-decreasing function on $ [ a, b] $ | ||
+ | different from a constant. | ||
Let | Let | ||
− | + | $$ \tag{* } | |
+ | u _ {1} ( t), u _ {2} ( t) \dots | ||
+ | $$ | ||
− | be an [[ | + | be an [[orthonormal system]] of functions on $ [ a, b] $ |
+ | relative to the distribution $ d \sigma ( t) $. | ||
+ | In the case of a mean-square approximation of the function $ f( t) $ | ||
+ | by linear combinations $ \sum _ {k=1} ^ {n} \lambda _ {k} u _ {k} ( t) $, | ||
+ | the minimal error for every $ n = 1, 2 \dots $ | ||
+ | is given by the sums | ||
− | + | $$ | |
+ | \sum_{k=1} ^ { n } c _ {k} ( f ) u _ {k} ( t), | ||
+ | $$ | ||
− | where | + | where $ c _ {k} ( f ) $ |
+ | are the [[Fourier coefficients]] of the function $ f( t) $ | ||
+ | with respect to the system (*); hence, the best method of approximation is linear. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 20:15, 10 January 2024
An approximation of a function $ f( t) $
by a function $ \phi ( t) $,
where the error measure $ \mu ( f; \phi ) $
is defined by the formula
$$ \mu _ \sigma ( f; \phi ) = \int\limits _ { a } ^ { b } [ f( t) - \phi( t)] ^ {2} d \sigma ( t), $$
where $ \sigma ( t) $ is a non-decreasing function on $ [ a, b] $ different from a constant.
Let
$$ \tag{* } u _ {1} ( t), u _ {2} ( t) \dots $$
be an orthonormal system of functions on $ [ a, b] $ relative to the distribution $ d \sigma ( t) $. In the case of a mean-square approximation of the function $ f( t) $ by linear combinations $ \sum _ {k=1} ^ {n} \lambda _ {k} u _ {k} ( t) $, the minimal error for every $ n = 1, 2 \dots $ is given by the sums
$$ \sum_{k=1} ^ { n } c _ {k} ( f ) u _ {k} ( t), $$
where $ c _ {k} ( f ) $ are the Fourier coefficients of the function $ f( t) $ with respect to the system (*); hence, the best method of approximation is linear.
References
[1] | V.L. Goncharov, "The theory of interpolation and approximation of functions" , Moscow (1954) (In Russian) |
[2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
Comments
Cf. also Approximation in the mean; Approximation of functions; Approximation of functions, linear methods; Best approximation; Best approximation in the mean; Best linear method.
References
[a1] | E.W. Cheney, "Introduction to approximation theory" , McGraw-Hill (1966) pp. Chapts. 4&6 |
[a2] | I.P. Natanson, "Constructive theory of functions" , 1–2 , F. Ungar (1964–1965) (Translated from Russian) |
Mean-square approximation of a function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mean-square_approximation_of_a_function&oldid=17600