|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | An associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747401.png" /> with a unit element (cf. [[Associative rings and algebras|Associative rings and algebras]]) in which all right and left ideals are principal, i.e. have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747402.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747403.png" />, respectively, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747404.png" />. Examples of principal ideal rings include the ring of integers, the ring of polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747405.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747406.png" />, the ring of skew polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747407.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747408.png" /> with an automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p0747409.png" /> (the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474010.png" /> have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474012.png" />, the addition of these elements is as usual, while their multiplication is defined by the associativity and distributivity laws and by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474013.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474014.png" />), the ring of differential polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474015.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474016.png" /> with a derivation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474017.png" /> (this ring also consists of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474019.png" />; addition is carried out in the ordinary way while multiplication is determined by the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474021.png" />). A principal ideal ring without a zero divisor is called a principal ideal domain. A commutative principal ideal ring is a direct sum of principal ideal domains and a principal ideal ring with a unique nilpotent prime ideal (cf. [[Nilpotent ideal|Nilpotent ideal]]; [[Prime ideal|Prime ideal]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474022.png" /> is a principal ideal domain, then two non-zero elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474024.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474025.png" /> have a greatest common left divisor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474026.png" /> and a least common right multiple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474027.png" />, which are defined as the elements that satisfy the equations:
| + | <!-- |
| + | p0747401.png |
| + | $#A+1 = 81 n = 0 |
| + | $#C+1 = 81 : ~/encyclopedia/old_files/data/P074/P.0704740 Principal ideal ring |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474028.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474030.png" /> are unique, up to an invertible right factor. A principal ideal domain is a unique factorization domain. The two-sided ideals of a principal ideal domain form a free commutative multiplicative [[Semi-group|semi-group]] with a zero and a unit element (the maximal ideals of the ring are the free generators of this semi-group).
| + | An associative ring $ R $ |
| + | with a unit element (cf. [[Associative rings and algebras]]) in which all right and left ideals are principal, i.e. have the form $ aR $ |
| + | and $ Ra $, |
| + | respectively, where $ a \in R $. |
| + | Examples of principal ideal rings include the ring of integers, the ring of polynomials $ F ( x) $ |
| + | over a field $ F $, |
| + | the ring of skew polynomials $ F( x, S) $ |
| + | over a field $ F $ |
| + | with an automorphism $ S: F \rightarrow F $( |
| + | the elements of $ F( x, S) $ |
| + | have the form $\sum_{i=0}^ {n} x ^ {i} a _ {i} $, |
| + | $ a _ {i} \in F $, |
| + | the addition of these elements is as usual, while their multiplication is defined by the associativity and distributivity laws and by the equation $ ax = xa ^ {S} $ |
| + | where $ a \in F $), |
| + | the ring of differential polynomials $ F( x, \prime ) $ |
| + | over a field $ F $ |
| + | with a derivation $ {} \prime : F \rightarrow F $( |
| + | this ring also consists of the elements $\sum_{i=0}^ {n} x ^ {i} a _ {i} $, |
| + | $ a _ {i} \in F $; |
| + | addition is carried out in the ordinary way while multiplication is determined by the equation $ ax = xa + a \prime $, |
| + | $ a \in F $). |
| + | A principal ideal ring without a zero divisor is called a principal ideal domain. A commutative principal ideal ring is a direct sum of principal ideal domains and a principal ideal ring with a unique nilpotent prime ideal (cf. [[Nilpotent ideal|Nilpotent ideal]]; [[Prime ideal|Prime ideal]]). If $ R $ |
| + | is a principal ideal domain, then two non-zero elements $ a $ |
| + | and $ b $ |
| + | of $ R $ |
| + | have a greatest common left divisor $ ( a, b) $ |
| + | and a least common right multiple $ [ a, b] $, |
| + | which are defined as the elements that satisfy the equations: |
| | | |
− | A submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474031.png" /> of a free module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474032.png" /> of finite rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474033.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474034.png" /> is a free module of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474035.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474036.png" />, and in the modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474038.png" /> it is possible to select bases <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474040.png" /> so that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474041.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474042.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474044.png" /> is a complete divisor, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474045.png" />, of the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474046.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474047.png" />. Each finitely-generated module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474048.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474049.png" /> is a direct sum of cyclic modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474051.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474053.png" /> is a complete divisor of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474054.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474055.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474056.png" />. This theorem generalizes the fundamental theorem on finitely-generated Abelian groups (cf. [[Abelian group|Abelian group]]). The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474058.png" />, in the preceding theorem are unambiguously defined up to a similarity (cf. [[Associative rings and algebras|Associative rings and algebras]]). These elements are called invariant factors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474059.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474060.png" /> can be represented as a direct sum of indecomposable cyclic modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474061.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474063.png" />. The elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474064.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474065.png" />, are defined up to a similarity, and are called elementary divisors of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474066.png" />. If the principal ideal domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474067.png" /> is commutative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474068.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474070.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474071.png" /> are irreducible (prime) elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474072.png" />. The ordinary properties of elementary divisors and invariant factors of linear transformations of finite-dimensional vector spaces follow from the above statements [[#References|[3]]].
| + | $$ |
| + | aR + bR = ( a, b) R; \ aR \cap bR = [ a, b] R. |
| + | $$ |
| + | |
| + | The elements $ ( a, b) $ |
| + | and $ [ a, b] $ |
| + | are unique, up to an invertible right factor. A principal ideal domain is a unique factorization domain. The two-sided ideals of a principal ideal domain form a free commutative multiplicative [[Semi-group|semi-group]] with a zero and a unit element (the maximal ideals of the ring are the free generators of this semi-group). |
| + | |
| + | A submodule $ N $ |
| + | of a free module $ M $ |
| + | of finite rank $ n $ |
| + | over $ R $ |
| + | is a free module of rank $ k \leq n $ |
| + | over $ R $, |
| + | and in the modules $ M $ |
| + | and $ N $ |
| + | it is possible to select bases $ a _ {1} \dots a _ {n} $ |
| + | and $ b _ {1} \dots b _ {k} $ |
| + | so that $ b _ {i} = e _ {i} a _ {i} $, |
| + | $ 1 \leq i \leq k $, |
| + | where $ e _ {i} \in R $ |
| + | and $ e _ {i} $ |
| + | is a complete divisor, i.e. $ e _ {i} R \cap R e _ {i} \supseteq R e _ {j} R $, |
| + | of the elements $ e _ {j} $ |
| + | if $ i < j $. |
| + | Each finitely-generated module $ K $ |
| + | over $ R $ |
| + | is a direct sum of cyclic modules $ R/e _ {i} R $, |
| + | $ 1 \leq i \leq m $, |
| + | where $ e _ {i} \in R $ |
| + | and $ e _ {i} $ |
| + | is a complete divisor of $ e _ {j} $ |
| + | if $ i < j $, |
| + | $ e _ {i} \neq 0 $. |
| + | This theorem generalizes the fundamental theorem on finitely-generated Abelian groups (cf. [[Abelian group|Abelian group]]). The elements $ e _ {i} $, |
| + | $ 1 \leq i \leq m $, |
| + | in the preceding theorem are unambiguously defined up to a similarity (cf. [[Associative rings and algebras|Associative rings and algebras]]). These elements are called invariant factors of $ K $. |
| + | Moreover, $ K $ |
| + | can be represented as a direct sum of indecomposable cyclic modules $ R/ q _ {i} R $, |
| + | where $ q _ {i} \in R $, |
| + | $ 1 \leq i \leq k $. |
| + | The elements $ q _ {i} $, |
| + | $ 1 \leq i \leq k $, |
| + | are defined up to a similarity, and are called elementary divisors of the module $ K $. |
| + | If the principal ideal domain $ R $ |
| + | is commutative, then $ q _ {i} R = 0 $ |
| + | or $ q _ {i} R = p _ {i} ^ {n _ {i} } R $, |
| + | $ 1 \leq i \leq k $, |
| + | where $ p _ {i} $ |
| + | are irreducible (prime) elements of $ R $. |
| + | The ordinary properties of elementary divisors and invariant factors of linear transformations of finite-dimensional vector spaces follow from the above statements [[#References|[3]]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''1''' , Springer (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O. Zariski, P. Samuel, "Commutative algebra" , '''1''' , Springer (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , '''1''' , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | The two examples of skew and differential polynomial rings are a special case of the general-skew-polynomial ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474073.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474074.png" /> is an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474075.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474076.png" /> is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474078.png" />-derivation (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474079.png" />), with multiplication defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474080.png" />. This ring is a principal ideal ring. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474081.png" /> is assumed to be only an isomorphism, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p074/p074740/p07474082.png" />, then the ring is right principal but not left principal. | + | The two examples of skew and differential polynomial rings are a special case of the general-skew-polynomial ring $ F [ x; S, d] $, |
| + | where $ S $ |
| + | is an automorphism of $ F $ |
| + | and $ d $ |
| + | is an $ S $- |
| + | derivation (i.e. $ d( ab) = a ^ {S} d( b)+ d( a) b $), |
| + | with multiplication defined by $ ax = xa ^ {S} + d( a) $. |
| + | This ring is a principal ideal ring. If $ S $ |
| + | is assumed to be only an isomorphism, with $ F ^ { S } \neq F $, |
| + | then the ring is right principal but not left principal. |
| | | |
| Left (and right) ideals of rings of finite matrices which contain a non-zero divisor matrix are also left (right) principal. The module properties, mentioned above, have also a (the original) version for matrices: i.e. every matrix over these rings is equivalent to a matrix in diagonal form. | | Left (and right) ideals of rings of finite matrices which contain a non-zero divisor matrix are also left (right) principal. The module properties, mentioned above, have also a (the original) version for matrices: i.e. every matrix over these rings is equivalent to a matrix in diagonal form. |
An associative ring $ R $
with a unit element (cf. Associative rings and algebras) in which all right and left ideals are principal, i.e. have the form $ aR $
and $ Ra $,
respectively, where $ a \in R $.
Examples of principal ideal rings include the ring of integers, the ring of polynomials $ F ( x) $
over a field $ F $,
the ring of skew polynomials $ F( x, S) $
over a field $ F $
with an automorphism $ S: F \rightarrow F $(
the elements of $ F( x, S) $
have the form $\sum_{i=0}^ {n} x ^ {i} a _ {i} $,
$ a _ {i} \in F $,
the addition of these elements is as usual, while their multiplication is defined by the associativity and distributivity laws and by the equation $ ax = xa ^ {S} $
where $ a \in F $),
the ring of differential polynomials $ F( x, \prime ) $
over a field $ F $
with a derivation $ {} \prime : F \rightarrow F $(
this ring also consists of the elements $\sum_{i=0}^ {n} x ^ {i} a _ {i} $,
$ a _ {i} \in F $;
addition is carried out in the ordinary way while multiplication is determined by the equation $ ax = xa + a \prime $,
$ a \in F $).
A principal ideal ring without a zero divisor is called a principal ideal domain. A commutative principal ideal ring is a direct sum of principal ideal domains and a principal ideal ring with a unique nilpotent prime ideal (cf. Nilpotent ideal; Prime ideal). If $ R $
is a principal ideal domain, then two non-zero elements $ a $
and $ b $
of $ R $
have a greatest common left divisor $ ( a, b) $
and a least common right multiple $ [ a, b] $,
which are defined as the elements that satisfy the equations:
$$
aR + bR = ( a, b) R; \ aR \cap bR = [ a, b] R.
$$
The elements $ ( a, b) $
and $ [ a, b] $
are unique, up to an invertible right factor. A principal ideal domain is a unique factorization domain. The two-sided ideals of a principal ideal domain form a free commutative multiplicative semi-group with a zero and a unit element (the maximal ideals of the ring are the free generators of this semi-group).
A submodule $ N $
of a free module $ M $
of finite rank $ n $
over $ R $
is a free module of rank $ k \leq n $
over $ R $,
and in the modules $ M $
and $ N $
it is possible to select bases $ a _ {1} \dots a _ {n} $
and $ b _ {1} \dots b _ {k} $
so that $ b _ {i} = e _ {i} a _ {i} $,
$ 1 \leq i \leq k $,
where $ e _ {i} \in R $
and $ e _ {i} $
is a complete divisor, i.e. $ e _ {i} R \cap R e _ {i} \supseteq R e _ {j} R $,
of the elements $ e _ {j} $
if $ i < j $.
Each finitely-generated module $ K $
over $ R $
is a direct sum of cyclic modules $ R/e _ {i} R $,
$ 1 \leq i \leq m $,
where $ e _ {i} \in R $
and $ e _ {i} $
is a complete divisor of $ e _ {j} $
if $ i < j $,
$ e _ {i} \neq 0 $.
This theorem generalizes the fundamental theorem on finitely-generated Abelian groups (cf. Abelian group). The elements $ e _ {i} $,
$ 1 \leq i \leq m $,
in the preceding theorem are unambiguously defined up to a similarity (cf. Associative rings and algebras). These elements are called invariant factors of $ K $.
Moreover, $ K $
can be represented as a direct sum of indecomposable cyclic modules $ R/ q _ {i} R $,
where $ q _ {i} \in R $,
$ 1 \leq i \leq k $.
The elements $ q _ {i} $,
$ 1 \leq i \leq k $,
are defined up to a similarity, and are called elementary divisors of the module $ K $.
If the principal ideal domain $ R $
is commutative, then $ q _ {i} R = 0 $
or $ q _ {i} R = p _ {i} ^ {n _ {i} } R $,
$ 1 \leq i \leq k $,
where $ p _ {i} $
are irreducible (prime) elements of $ R $.
The ordinary properties of elementary divisors and invariant factors of linear transformations of finite-dimensional vector spaces follow from the above statements [3].
References
[1] | N. Jacobson, "The theory of rings" , Amer. Math. Soc. (1943) |
[2] | O. Zariski, P. Samuel, "Commutative algebra" , 1 , Springer (1975) |
[3] | N. Bourbaki, "Elements of mathematics. Algebra: Algebraic structures. Linear algebra" , 1 , Addison-Wesley (1974) pp. Chapt.1;2 (Translated from French) |
The two examples of skew and differential polynomial rings are a special case of the general-skew-polynomial ring $ F [ x; S, d] $,
where $ S $
is an automorphism of $ F $
and $ d $
is an $ S $-
derivation (i.e. $ d( ab) = a ^ {S} d( b)+ d( a) b $),
with multiplication defined by $ ax = xa ^ {S} + d( a) $.
This ring is a principal ideal ring. If $ S $
is assumed to be only an isomorphism, with $ F ^ { S } \neq F $,
then the ring is right principal but not left principal.
Left (and right) ideals of rings of finite matrices which contain a non-zero divisor matrix are also left (right) principal. The module properties, mentioned above, have also a (the original) version for matrices: i.e. every matrix over these rings is equivalent to a matrix in diagonal form.