Difference between revisions of "Spinor structure"
(Importing text file) |
(latex details) |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0867802.png | ||
+ | $#A+1 = 66 n = 0 | ||
+ | $#C+1 = 66 : ~/encyclopedia/old_files/data/S086/S.0806780 Spinor structure | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''on an $ n $- | |
+ | dimensional manifold $ M $, | ||
+ | fibration of spin-frames'' | ||
− | + | A principal fibre bundle $ \widetilde \pi : \widetilde{P} \rightarrow M $ | |
+ | over $ M $ | ||
+ | with structure group $ \mathop{\rm Spin} _ {n} $( | ||
+ | see [[Spinor group|Spinor group]]), covering some principal fibre bundle $ \pi : P \rightarrow M $ | ||
+ | of co-frames with structure group $ \mathop{\rm SO} _ {n} $. | ||
+ | The latter condition means that there is given a surjective homomorphism $ \kappa : \widetilde{P} \rightarrow P $ | ||
+ | of principal fibre bundles, which is the identity on the base and is compatible with the natural homomorphism $ \rho : \mathop{\rm Spin} _ {n} \rightarrow \mathop{\rm SO} _ {n} $. | ||
+ | One says that the spinor structure $ ( \widetilde \pi , \kappa ) $ | ||
+ | is subordinate to the Riemannian metric $ g $ | ||
+ | on $ M $ | ||
+ | defined by $ \pi $. | ||
+ | From the point of view of the theory of $ G $- | ||
+ | structures, a spinor structure is a generalized $ G $- | ||
+ | structure with structure group $ G = \mathop{\rm Spin} _ {n} $ | ||
+ | together with a non-faithful representation $ \rho : \mathop{\rm Spin} _ {n} \rightarrow \mathop{\rm SO} _ {n} $( | ||
+ | cf. [[G-structure| $ G $- | ||
+ | structure]]). | ||
− | + | In a similar way one defines spinor structures subordinate to pseudo-Riemannian metrics, and spinor structures on complex manifolds subordinate to complex metrics. Necessary and sufficient conditions for the existence of a spinor structure on $ M $ | |
+ | consist of the orientability of $ M $ | ||
+ | and the vanishing of the Stiefel–Whitney class $ W _ {2} ( M) $. | ||
+ | When these conditions hold, the number of non-isomorphic spinor structures on $ M $ | ||
+ | subordinate to a given Riemannian metric coincides with the order of the group $ H ^ {1} ( M, \mathbf Z ) $( | ||
+ | see [[#References|[6]]]). | ||
− | + | Let $ C $ | |
+ | be the complexification of the [[Clifford algebra]] of $ \mathbf R ^ {n} $ | ||
+ | with quadratic form $ q= \sum _{i=1} ^ {n} x _ {i} ^ {2} $. | ||
+ | Then $ C $ | ||
+ | has an irreducible representation in a space $ S $ | ||
+ | of dimension $ 2 ^ {[ n/2] } $, | ||
+ | which defines a representation of $ \mathop{\rm Spin} _ {n} \subset C $ | ||
+ | in $ S $. | ||
+ | Every spinor structure $ \widetilde \pi $ | ||
+ | on $ M $ | ||
+ | yields an associated vector bundle $ \pi _ {S} : S( M) \rightarrow M $ | ||
+ | with typical fibre $ S $, | ||
+ | called a spinor bundle. The Riemannian connection on $ M $ | ||
+ | determines in a canonical way a connection on $ \pi _ {S} $. | ||
+ | On the space $ \Gamma ( S) $ | ||
+ | of smooth sections of $ \pi _ {S} $( | ||
+ | spinor fields) there acts a linear differential operator $ D $ | ||
+ | of order $ 1 $, | ||
+ | the Dirac operator, which is locally defined by the formula | ||
− | + | $$ | |
+ | Du = \sum _ {i=1} ^ { n } s _ {i} \cdot \nabla _ {s _ {i} } | ||
+ | u ,\ u \in \Gamma ( S) , | ||
+ | $$ | ||
− | + | where $ \nabla _ {s _ {i} } $( | |
+ | $ i= 1 \dots n $) | ||
+ | are the covariant derivatives in the directions of the system of orthonormal vector fields $ s _ {i} $ | ||
+ | and the dot denotes multiplication of spinor fields by vector fields which correspond to the above $ C $- | ||
+ | module structure on $ S $. | ||
− | + | Spinor fields in the kernel of $ D $ | |
− | + | are sometimes called harmonic spinor fields. If $ M $ | |
− | + | is compact, then $ \mathop{\rm dim} \mathop{\rm ker} D < \infty $, | |
− | + | and this dimension does not change under conformal deformation of the metric [[#References|[4]]]. If the Riemannian metric on $ M $ | |
− | + | has positive scalar curvature, then $ \mathop{\rm ker} D = 0 $( | |
− | + | see [[#References|[4]]], [[#References|[5]]]). | |
+ | A spinor structure on a [[Space-time|space-time]] manifold $ ( M, g) $( | ||
+ | that is, on a $ 4 $- | ||
+ | dimensional Lorentz manifold) is defined as a spinor structure subordinate to the Lorentz metric $ g $. | ||
+ | The existence of a spinor structure on a non-compact space-time $ M $ | ||
+ | is equivalent to the total parallelizability of $ M $( | ||
+ | see [[#References|[3]]]). As a module over the spinor group $ \mathop{\rm Spin} ( 1, 3) \approx \mathop{\rm SL} ( 2, G) $, | ||
+ | the spinor space decomposes into the direct sum of two complex $ 2 $- | ||
+ | dimensional complexly-conjugate $ \mathop{\rm SL} ( 2, G) $- | ||
+ | modules $ {\mathcal C} ^ {2} $ | ||
+ | and $ {\mathcal C} dot {} ^ {2} $. | ||
+ | This corresponds to the decomposition $ S( M)= {\mathcal C} ^ {2} ( M) \oplus {\mathcal C} dot {} ^ {2} ( M) $ | ||
+ | of the spinor bundle, where the tensor product $ {\mathcal C} ^ {2} ( M) \oplus {\mathcal C} dot {} ^ {2} ( M) $ | ||
+ | is identified with the complexification of the tangent bundle $ TM $. | ||
+ | Spinor fields in space-time that are eigenfunctions of the Dirac operator characterize free fields of particles with spin $ 1/2 $, | ||
+ | such as electrons. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Baum, | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> G. Casanova, "L'algèbre vectorielle" , Presses Univ. France (1976)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> R. Penrose, "The structure of space-time" C. deWitt (ed.) , ''Batelle Rencontres 1967 Lectures in Math. Physics'' , Benjamin (1968) pp. 121–235 (Chapt. VII)</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> R. Geroch, "Spinor structure of space-times in general relativity" ''J. Math. Phys.'' , '''9''' (1968) pp. 1739–1744</TD></TR> | ||
+ | <TR><TD valign="top">[4]</TD> <TD valign="top"> N. Hitchin, "Harmonic spinors" ''Adv. in Math.'' , '''14''' (1974) pp. 1–55</TD></TR> | ||
+ | <TR><TD valign="top">[5]</TD> <TD valign="top"> A. Lichnerowicz, "Champs spinoriels et propagateurs en relativité générale" ''Bull. Soc. Math. France'' , '''92''' (1964) pp. 11–100</TD></TR> | ||
+ | <TR><TD valign="top">[6]</TD> <TD valign="top"> J. Milnor, "Spin structure on manifolds" ''Enseign. Math.'' , '''9''' (1963) pp. 198–203</TD></TR> | ||
+ | <TR><TD valign="top">[7]</TD> <TD valign="top"> R. Penrose, "The twistor programme" ''Reports Math. Phys.'' , '''12''' (1977) pp. 65–76</TD></TR> | ||
+ | <TR><TD valign="top">[8]</TD> <TD valign="top"> R.O., jr. Wells, "Complex manifolds and mathematical physics" ''Bull. Amer. Math. Soc.'' , '''1''' (1979) pp. 296–336</TD></TR> | ||
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Baum, "Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten" , Teubner (1981)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> C.T.J. Dodson, "Categories, bundles, and spacetime topology" , Kluwer (1988) pp. Chapt. V, §3 {{ZBL|0661.53016}}</TD></TR> | ||
+ | </table> |
Latest revision as of 17:42, 6 January 2024
on an $ n $-
dimensional manifold $ M $,
fibration of spin-frames
A principal fibre bundle $ \widetilde \pi : \widetilde{P} \rightarrow M $ over $ M $ with structure group $ \mathop{\rm Spin} _ {n} $( see Spinor group), covering some principal fibre bundle $ \pi : P \rightarrow M $ of co-frames with structure group $ \mathop{\rm SO} _ {n} $. The latter condition means that there is given a surjective homomorphism $ \kappa : \widetilde{P} \rightarrow P $ of principal fibre bundles, which is the identity on the base and is compatible with the natural homomorphism $ \rho : \mathop{\rm Spin} _ {n} \rightarrow \mathop{\rm SO} _ {n} $. One says that the spinor structure $ ( \widetilde \pi , \kappa ) $ is subordinate to the Riemannian metric $ g $ on $ M $ defined by $ \pi $. From the point of view of the theory of $ G $- structures, a spinor structure is a generalized $ G $- structure with structure group $ G = \mathop{\rm Spin} _ {n} $ together with a non-faithful representation $ \rho : \mathop{\rm Spin} _ {n} \rightarrow \mathop{\rm SO} _ {n} $( cf. $ G $- structure).
In a similar way one defines spinor structures subordinate to pseudo-Riemannian metrics, and spinor structures on complex manifolds subordinate to complex metrics. Necessary and sufficient conditions for the existence of a spinor structure on $ M $ consist of the orientability of $ M $ and the vanishing of the Stiefel–Whitney class $ W _ {2} ( M) $. When these conditions hold, the number of non-isomorphic spinor structures on $ M $ subordinate to a given Riemannian metric coincides with the order of the group $ H ^ {1} ( M, \mathbf Z ) $( see [6]).
Let $ C $ be the complexification of the Clifford algebra of $ \mathbf R ^ {n} $ with quadratic form $ q= \sum _{i=1} ^ {n} x _ {i} ^ {2} $. Then $ C $ has an irreducible representation in a space $ S $ of dimension $ 2 ^ {[ n/2] } $, which defines a representation of $ \mathop{\rm Spin} _ {n} \subset C $ in $ S $. Every spinor structure $ \widetilde \pi $ on $ M $ yields an associated vector bundle $ \pi _ {S} : S( M) \rightarrow M $ with typical fibre $ S $, called a spinor bundle. The Riemannian connection on $ M $ determines in a canonical way a connection on $ \pi _ {S} $. On the space $ \Gamma ( S) $ of smooth sections of $ \pi _ {S} $( spinor fields) there acts a linear differential operator $ D $ of order $ 1 $, the Dirac operator, which is locally defined by the formula
$$ Du = \sum _ {i=1} ^ { n } s _ {i} \cdot \nabla _ {s _ {i} } u ,\ u \in \Gamma ( S) , $$
where $ \nabla _ {s _ {i} } $( $ i= 1 \dots n $) are the covariant derivatives in the directions of the system of orthonormal vector fields $ s _ {i} $ and the dot denotes multiplication of spinor fields by vector fields which correspond to the above $ C $- module structure on $ S $.
Spinor fields in the kernel of $ D $ are sometimes called harmonic spinor fields. If $ M $ is compact, then $ \mathop{\rm dim} \mathop{\rm ker} D < \infty $, and this dimension does not change under conformal deformation of the metric [4]. If the Riemannian metric on $ M $ has positive scalar curvature, then $ \mathop{\rm ker} D = 0 $( see [4], [5]).
A spinor structure on a space-time manifold $ ( M, g) $( that is, on a $ 4 $- dimensional Lorentz manifold) is defined as a spinor structure subordinate to the Lorentz metric $ g $. The existence of a spinor structure on a non-compact space-time $ M $ is equivalent to the total parallelizability of $ M $( see [3]). As a module over the spinor group $ \mathop{\rm Spin} ( 1, 3) \approx \mathop{\rm SL} ( 2, G) $, the spinor space decomposes into the direct sum of two complex $ 2 $- dimensional complexly-conjugate $ \mathop{\rm SL} ( 2, G) $- modules $ {\mathcal C} ^ {2} $ and $ {\mathcal C} dot {} ^ {2} $. This corresponds to the decomposition $ S( M)= {\mathcal C} ^ {2} ( M) \oplus {\mathcal C} dot {} ^ {2} ( M) $ of the spinor bundle, where the tensor product $ {\mathcal C} ^ {2} ( M) \oplus {\mathcal C} dot {} ^ {2} ( M) $ is identified with the complexification of the tangent bundle $ TM $. Spinor fields in space-time that are eigenfunctions of the Dirac operator characterize free fields of particles with spin $ 1/2 $, such as electrons.
References
[1] | G. Casanova, "L'algèbre vectorielle" , Presses Univ. France (1976) |
[2] | R. Penrose, "The structure of space-time" C. deWitt (ed.) , Batelle Rencontres 1967 Lectures in Math. Physics , Benjamin (1968) pp. 121–235 (Chapt. VII) |
[3] | R. Geroch, "Spinor structure of space-times in general relativity" J. Math. Phys. , 9 (1968) pp. 1739–1744 |
[4] | N. Hitchin, "Harmonic spinors" Adv. in Math. , 14 (1974) pp. 1–55 |
[5] | A. Lichnerowicz, "Champs spinoriels et propagateurs en relativité générale" Bull. Soc. Math. France , 92 (1964) pp. 11–100 |
[6] | J. Milnor, "Spin structure on manifolds" Enseign. Math. , 9 (1963) pp. 198–203 |
[7] | R. Penrose, "The twistor programme" Reports Math. Phys. , 12 (1977) pp. 65–76 |
[8] | R.O., jr. Wells, "Complex manifolds and mathematical physics" Bull. Amer. Math. Soc. , 1 (1979) pp. 296–336 |
[a1] | H. Baum, "Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten" , Teubner (1981) |
[a2] | C.T.J. Dodson, "Categories, bundles, and spacetime topology" , Kluwer (1988) pp. Chapt. V, §3 Zbl 0661.53016 |
Spinor structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spinor_structure&oldid=16824