Difference between revisions of "Spectrum of a ring"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
(latex details) |
||
| (One intermediate revision by one other user not shown) | |||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | s0865901.png | ||
| + | $#A+1 = 71 n = 0 | ||
| + | $#C+1 = 71 : ~/encyclopedia/old_files/data/S086/S.0806590 Spectrum of a ring | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A topological space $ \mathop{\rm Spec} A $ | |
| + | whose points are the prime ideals $ \mathfrak p $ | ||
| + | of a ring $ A $ | ||
| + | with the [[Zariski topology|Zariski topology]] (also called the spectral topology). It is assumed that $ A $ | ||
| + | is commutative and has an identity. The elements of $ A $ | ||
| + | can be regarded as functions on $ \mathop{\rm Spec} A $ | ||
| + | by setting $ a( \mathfrak p ) \equiv a $ | ||
| + | $ \mathop{\rm mod} \mathfrak p \in A / \mathfrak p $. | ||
| + | $ \mathop{\rm Spec} A $ | ||
| + | supports a sheaf of local rings $ {\mathcal O} ( \mathop{\rm Spec} A) $, | ||
| + | called its structure sheaf. For a point $ \mathfrak p \in \mathop{\rm Spec} A $, | ||
| + | the stalk of $ {\mathcal O} ( \mathop{\rm Spec} A ) $ | ||
| + | over $ \mathfrak p $ | ||
| + | is the localization $ A _ {\mathfrak p} $ | ||
| + | of $ A $ | ||
| + | at $ \mathfrak p $. | ||
| − | + | To any identity-preserving ring homomorphism $ \phi : A \rightarrow A ^ \prime $ | |
| + | there corresponds a continuous mapping $ \phi ^ {*} : \mathop{\rm Spec} A ^ \prime \rightarrow \mathop{\rm Spec} A $. | ||
| + | If $ N $ | ||
| + | is the nil radical of $ A $, | ||
| + | then the natural mapping $ \mathop{\rm Spec} A /N \rightarrow \mathop{\rm Spec} A $ | ||
| + | is a homeomorphism of topological spaces. | ||
| − | + | For a non-nilpotent element $ f \in A $, | |
| + | let $ D( f )= ( \mathop{\rm Spec} A ) \setminus V( f ) $, | ||
| + | where $ V( f )= \{ {\mathfrak p \in \mathop{\rm Spec} A } : {f \in \mathfrak p } \} $. | ||
| + | Then the ringed spaces $ D( f ) $ | ||
| + | and $ \mathop{\rm Spec} A _ {(} f) $, | ||
| + | where $ A _ {(} f) $ | ||
| + | is the localization of $ A $ | ||
| + | with respect to $ f $, | ||
| + | are isomorphic. The sets $ D( f ) $ | ||
| + | are called the principal open sets. They form a basis for the topology on $ \mathop{\rm Spec} A $. | ||
| + | A point $ \mathfrak p \in \mathop{\rm Spec} A $ | ||
| + | is closed if and only if $ \mathfrak p $ | ||
| + | is a maximal ideal of $ A $. | ||
| + | By assigning to $ \mathfrak p $ | ||
| + | its closure $ \overline{ {\mathfrak p }}\; $ | ||
| + | in $ \mathop{\rm Spec} A $, | ||
| + | one obtains a one-to-one correspondence between the points of $ \mathop{\rm Spec} A $ | ||
| + | and the set of closed irreducible subsets of $ \mathop{\rm Spec} A $. | ||
| + | $ \mathop{\rm Spec} A $ | ||
| + | is quasi-compact, but usually not Hausdorff. The dimension of $ \mathop{\rm Spec} A $ | ||
| + | is defined as the largest $ n $ | ||
| + | for which there is a sequence of distinct closed irreducible sets $ Z _ {0} \subset \dots \subset Z _ {n} \subset \mathop{\rm Spec} A $. | ||
| + | |||
| + | Many properties of $ A $ | ||
| + | can be described in terms of $ \mathop{\rm Spec} A $. | ||
| + | For example, $ A/N $ | ||
| + | is Noetherian if and only if $ \mathop{\rm Spec} A $ | ||
| + | has the descending chain condition for closed sets; $ \mathop{\rm Spec} A $ | ||
| + | is an irreducible space if and only if $ A/N $ | ||
| + | is an integral domain; the dimension of $ \mathop{\rm Spec} A $ | ||
| + | coincides with the Krull dimension of $ A $, | ||
| + | etc. | ||
| + | |||
| + | Sometimes one considers the maximal spectrum $ \mathop{\rm Specm} A $, | ||
| + | which is the subspace of $ \mathop{\rm Spec} A $ | ||
| + | consisting of the closed points. For a graded ring $ A $ | ||
| + | one also considers the projective spectrum $ \mathop{\rm Proj} A $. | ||
| + | If $ A= \sum_{n=0} ^ \infty A _ {n} $, | ||
| + | then the points of $ \mathop{\rm Proj} A $ | ||
| + | are the homogeneous prime ideals $ \mathfrak p $ | ||
| + | of $ A $ | ||
| + | such that $ \mathfrak p \Nps \sum_{n=1} ^ \infty A _ {n} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre commutative" , ''Eléments de mathématiques'' , '''XXVIII''' , Hermann (1961) {{MR|0217051}} {{MR|0171800}} {{ZBL|0119.03603}} {{ZBL|0108.04002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Algèbre commutative" , ''Eléments de mathématiques'' , '''XXVIII''' , Hermann (1961) {{MR|0217051}} {{MR|0171800}} {{ZBL|0119.03603}} {{ZBL|0108.04002}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | The continuous mapping | + | The continuous mapping $ \phi ^ {*} : \mathop{\rm Spec} A ^ \prime \rightarrow \mathop{\rm Spec} A $ |
| + | defined by a unitary ring homomorphism $ \phi : A \rightarrow A ^ \prime $ | ||
| + | is given by $ \phi ^ {*} ( \mathfrak p ^ \prime ) = \phi ^ {-} 1 ( \mathfrak p ^ \prime ) $. | ||
| − | The pair | + | The pair $ ( \mathop{\rm Spec} A, {\mathcal O} ( \mathop{\rm Spec} A )) $ |
| + | is an [[Affine scheme|affine scheme]]. | ||
| − | Similarly, | + | Similarly, $ \mathop{\rm Proj} A $ |
| + | supports a sheaf of local rings $ {\mathcal O} ( \mathop{\rm Proj} A) $, | ||
| + | the stalk of which at a point $ \mathfrak p $ | ||
| + | is the homogeneous localization $ A _ {( \mathfrak p ) } $ | ||
| + | of $ A $ | ||
| + | at $ \mathfrak p $. | ||
| + | (See also [[Localization in a commutative algebra|Localization in a commutative algebra]].) The pair $ ( \mathop{\rm Proj} A, {\mathcal O} ( \mathop{\rm Proj} A )) $ | ||
| + | is a [[Projective scheme|projective scheme]]. | ||
Spectra have also been studied for non-commutative rings, cf. [[#References|[a1]]]. | Spectra have also been studied for non-commutative rings, cf. [[#References|[a1]]]. | ||
| − | For Krull dimension see [[ | + | For Krull dimension see [[Dimension]] (of an associative ring). |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. van Oystaeyen, A. Verschoren, "Non-commutative algebraic geometry" , ''Lect. notes in math.'' , '''887''' , Springer (1981) {{MR|639153}} {{ZBL|0477.16001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. van Oystaeyen, A. Verschoren, "Non-commutative algebraic geometry" , ''Lect. notes in math.'' , '''887''' , Springer (1981) {{MR|639153}} {{ZBL|0477.16001}} </TD></TR></table> | ||
Latest revision as of 13:13, 6 January 2024
A topological space $ \mathop{\rm Spec} A $
whose points are the prime ideals $ \mathfrak p $
of a ring $ A $
with the Zariski topology (also called the spectral topology). It is assumed that $ A $
is commutative and has an identity. The elements of $ A $
can be regarded as functions on $ \mathop{\rm Spec} A $
by setting $ a( \mathfrak p ) \equiv a $
$ \mathop{\rm mod} \mathfrak p \in A / \mathfrak p $.
$ \mathop{\rm Spec} A $
supports a sheaf of local rings $ {\mathcal O} ( \mathop{\rm Spec} A) $,
called its structure sheaf. For a point $ \mathfrak p \in \mathop{\rm Spec} A $,
the stalk of $ {\mathcal O} ( \mathop{\rm Spec} A ) $
over $ \mathfrak p $
is the localization $ A _ {\mathfrak p} $
of $ A $
at $ \mathfrak p $.
To any identity-preserving ring homomorphism $ \phi : A \rightarrow A ^ \prime $ there corresponds a continuous mapping $ \phi ^ {*} : \mathop{\rm Spec} A ^ \prime \rightarrow \mathop{\rm Spec} A $. If $ N $ is the nil radical of $ A $, then the natural mapping $ \mathop{\rm Spec} A /N \rightarrow \mathop{\rm Spec} A $ is a homeomorphism of topological spaces.
For a non-nilpotent element $ f \in A $, let $ D( f )= ( \mathop{\rm Spec} A ) \setminus V( f ) $, where $ V( f )= \{ {\mathfrak p \in \mathop{\rm Spec} A } : {f \in \mathfrak p } \} $. Then the ringed spaces $ D( f ) $ and $ \mathop{\rm Spec} A _ {(} f) $, where $ A _ {(} f) $ is the localization of $ A $ with respect to $ f $, are isomorphic. The sets $ D( f ) $ are called the principal open sets. They form a basis for the topology on $ \mathop{\rm Spec} A $. A point $ \mathfrak p \in \mathop{\rm Spec} A $ is closed if and only if $ \mathfrak p $ is a maximal ideal of $ A $. By assigning to $ \mathfrak p $ its closure $ \overline{ {\mathfrak p }}\; $ in $ \mathop{\rm Spec} A $, one obtains a one-to-one correspondence between the points of $ \mathop{\rm Spec} A $ and the set of closed irreducible subsets of $ \mathop{\rm Spec} A $. $ \mathop{\rm Spec} A $ is quasi-compact, but usually not Hausdorff. The dimension of $ \mathop{\rm Spec} A $ is defined as the largest $ n $ for which there is a sequence of distinct closed irreducible sets $ Z _ {0} \subset \dots \subset Z _ {n} \subset \mathop{\rm Spec} A $.
Many properties of $ A $ can be described in terms of $ \mathop{\rm Spec} A $. For example, $ A/N $ is Noetherian if and only if $ \mathop{\rm Spec} A $ has the descending chain condition for closed sets; $ \mathop{\rm Spec} A $ is an irreducible space if and only if $ A/N $ is an integral domain; the dimension of $ \mathop{\rm Spec} A $ coincides with the Krull dimension of $ A $, etc.
Sometimes one considers the maximal spectrum $ \mathop{\rm Specm} A $, which is the subspace of $ \mathop{\rm Spec} A $ consisting of the closed points. For a graded ring $ A $ one also considers the projective spectrum $ \mathop{\rm Proj} A $. If $ A= \sum_{n=0} ^ \infty A _ {n} $, then the points of $ \mathop{\rm Proj} A $ are the homogeneous prime ideals $ \mathfrak p $ of $ A $ such that $ \mathfrak p \Nps \sum_{n=1} ^ \infty A _ {n} $.
References
| [1] | N. Bourbaki, "Algèbre commutative" , Eléments de mathématiques , XXVIII , Hermann (1961) MR0217051 MR0171800 Zbl 0119.03603 Zbl 0108.04002 |
| [2] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Comments
The continuous mapping $ \phi ^ {*} : \mathop{\rm Spec} A ^ \prime \rightarrow \mathop{\rm Spec} A $ defined by a unitary ring homomorphism $ \phi : A \rightarrow A ^ \prime $ is given by $ \phi ^ {*} ( \mathfrak p ^ \prime ) = \phi ^ {-} 1 ( \mathfrak p ^ \prime ) $.
The pair $ ( \mathop{\rm Spec} A, {\mathcal O} ( \mathop{\rm Spec} A )) $ is an affine scheme.
Similarly, $ \mathop{\rm Proj} A $ supports a sheaf of local rings $ {\mathcal O} ( \mathop{\rm Proj} A) $, the stalk of which at a point $ \mathfrak p $ is the homogeneous localization $ A _ {( \mathfrak p ) } $ of $ A $ at $ \mathfrak p $. (See also Localization in a commutative algebra.) The pair $ ( \mathop{\rm Proj} A, {\mathcal O} ( \mathop{\rm Proj} A )) $ is a projective scheme.
Spectra have also been studied for non-commutative rings, cf. [a1].
For Krull dimension see Dimension (of an associative ring).
References
| [a1] | F. van Oystaeyen, A. Verschoren, "Non-commutative algebraic geometry" , Lect. notes in math. , 887 , Springer (1981) MR639153 Zbl 0477.16001 |
Spectrum of a ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Spectrum_of_a_ring&oldid=23982