Difference between revisions of "Genus of an entire function"
(Importing text file) |
(latex details) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0440301.png | ||
+ | $#A+1 = 10 n = 0 | ||
+ | $#C+1 = 10 : ~/encyclopedia/old_files/data/G044/G.0404030 Genus of an entire function | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The integer equal to the larger of the two numbers $ p $ | |
+ | and $ q $ | ||
+ | in the representation of the [[Entire function|entire function]] $ f ( z) $ | ||
+ | in the form | ||
− | + | $$ \tag{* } | |
+ | f ( z) = z ^ \lambda e ^ {Q ( z) } \prod_{k=1} ^ \infty | ||
+ | \left ( 1 - | ||
+ | \frac{z}{a _ {k} } | ||
+ | \right ) \mathop{\rm exp} \left ( | ||
+ | \frac{z}{a _ {k} } | ||
+ | + | ||
+ | \frac{z ^ {2} }{2a _ {k} ^ {2} } | ||
+ | + {} \dots + | ||
+ | \frac{z ^ {p} }{pa _ {k} ^ {p} } | ||
+ | \right ) , | ||
+ | $$ | ||
− | + | where $ q $ | |
+ | is the degree of the polynomial $ Q ( z) $ | ||
+ | and $ p $ | ||
+ | is the least integer satisfying the condition | ||
− | The number | + | $$ |
+ | \sum_{k=1} ^ \infty | ||
+ | |||
+ | \frac{1}{| a _ {k} | ^ {p + 1 } } | ||
+ | |||
+ | < \infty . | ||
+ | $$ | ||
+ | |||
+ | The number $ p $ | ||
+ | is called the genus of the product appearing in formula (*). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.Ya. Levin, "Distribution of zeros of entire functions" , Amer. Math. Soc. (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.Ya. Levin, "Distribution of zeros of entire functions" , Amer. Math. Soc. (1964) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 12:51, 6 January 2024
The integer equal to the larger of the two numbers $ p $
and $ q $
in the representation of the entire function $ f ( z) $
in the form
$$ \tag{* } f ( z) = z ^ \lambda e ^ {Q ( z) } \prod_{k=1} ^ \infty \left ( 1 - \frac{z}{a _ {k} } \right ) \mathop{\rm exp} \left ( \frac{z}{a _ {k} } + \frac{z ^ {2} }{2a _ {k} ^ {2} } + {} \dots + \frac{z ^ {p} }{pa _ {k} ^ {p} } \right ) , $$
where $ q $ is the degree of the polynomial $ Q ( z) $ and $ p $ is the least integer satisfying the condition
$$ \sum_{k=1} ^ \infty \frac{1}{| a _ {k} | ^ {p + 1 } } < \infty . $$
The number $ p $ is called the genus of the product appearing in formula (*).
References
[1] | B.Ya. Levin, "Distribution of zeros of entire functions" , Amer. Math. Soc. (1964) (Translated from Russian) |
Comments
The genus plays a role in factorization theorems for entire functions, cf. e.g. Hadamard theorem; Weierstrass theorem.
References
[a1] | R.P. Boas, "Entire functions" , Acad. Press (1954) |
Genus of an entire function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Genus_of_an_entire_function&oldid=18397