Namespaces
Variants
Actions

Difference between revisions of "Density hypothesis"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(latex details)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A proposed inequality providing a bound for the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310801.png" /> of zeros <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310802.png" /> of the Riemann zeta-function
+
<!--
 +
d0310801.png
 +
$#A+1 = 37 n = 2
 +
$#C+1 = 37 : ~/encyclopedia/old_files/data/D031/D.0301080 Density hypothesis
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310803.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310804.png" />, in the rectangle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310805.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310806.png" />.
+
A proposed inequality providing a bound for the number  $  N( \sigma , T) $
 +
of zeros  $  \rho = \beta + i \gamma $
 +
of the Riemann zeta-function
 +
 
 +
$$
 +
\zeta ( s)  = \sum _ {n=1} ^  \infty 
 +
\frac{1}{n  ^ {s} }
 +
,
 +
$$
 +
 
 +
where  $  s = \sigma + it $,  
 +
in the rectangle $  1/2< \sigma \leq  \beta \leq  1 $,  
 +
$  | \gamma | \leq  T $.
  
 
The most exact formulation of the density hypothesis is
 
The most exact formulation of the density hypothesis is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310807.png" /></td> </tr></table>
+
$$
 +
N( \sigma , T)  \leq  cT ^ {2( 1- \sigma ) }  \mathop{\rm ln}  ^ {A}  T.
 +
$$
  
 
A simpler, but less accurate, form of the density hypothesis is
 
A simpler, but less accurate, form of the density hypothesis is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310808.png" /></td> </tr></table>
+
$$
 +
N( \sigma , T)  \leq  cT ^ {2( 1- \sigma )+ \epsilon } .
 +
$$
  
The density hypothesis enables one to obtain results in the theory of prime numbers that are comparable with those following from the Riemann hypothesis. For example, it follows from the density hypothesis that for sufficiently large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d0310809.png" /> there is at least one prime number in each segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108010.png" />.
+
The density hypothesis enables one to obtain results in the theory of prime numbers that are comparable with those following from the Riemann hypothesis. For example, it follows from the density hypothesis that for sufficiently large $  x $
 +
there is at least one prime number in each segment $  [ x, x+ x ^ {\epsilon + 1/2 } ] $.
  
The density hypothesis is a consequence of the stronger [[Lindelöf hypothesis|Lindelöf hypothesis]]. A difference from the latter is that the density hypothesis has been partially proved, in terms of various [[Density theorems|density theorems]], beginning with certain values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108011.png" />.
+
The density hypothesis is a consequence of the stronger [[Lindelöf hypothesis|Lindelöf hypothesis]]. A difference from the latter is that the density hypothesis has been partially proved, in terms of various [[Density theorems|density theorems]], beginning with certain values $  \sigma \geq  \sigma _ {0} > 1/2 $.
  
For the number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108012.png" /> of zeros of Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108014.png" />-functions
+
For the number $N(\sigma, T, \chi)$ of zeros of Dirichlet $L$-functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108015.png" /></td> </tr></table>
+
$$
 +
L( s, \chi )  = \sum _ {n=1} ^  \infty  \frac{\chi ( n, k) }{n  ^ {s} } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108016.png" /> is a character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108017.png" />, an analogous density hypothesis is posed. In averaged form, this is
+
where $  \chi ( n, k) $
 +
is a character modulo $  k $,  
 +
an analogous density hypothesis is posed. In averaged form, this is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108018.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\sum _ {\chi  \mathop{\rm mod}  k } N( \sigma , T, \chi )  \leq  c( kT) ^ {2( 1-
 +
\sigma )+ \epsilon } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\sum _ {k\leq  Q }  \sum _ {\chi  ^ {*}  \mathop{\rm mod}  k } N( \sigma
 +
, T, \chi  ^ {*} )  \leq  c( k  ^ {2} T) ^ {2( 1- \sigma )+ \epsilon } ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108020.png" /> is a primitive character modulo <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108021.png" />.
+
where $  \chi  ^ {*} $
 +
is a primitive character modulo $  k $.
  
The density hypothesis for Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108022.png" /> functions is used in the theory of the distribution of prime numbers belonging to arithmetic progressions.
+
The density hypothesis for Dirichlet $  L $
 +
functions is used in the theory of the distribution of prime numbers belonging to arithmetic progressions.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Davenport,  "Multiplicative number theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.F. Lavrik,  "A survey of Linnik's large sieve and the density theory of zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108023.png" />-functions"  ''Russian Math. Surveys'' , '''35''' :  2  (1980)  pp. 63–76  ''Uspekhi Mat. Nauk'' , '''35''' :  2  (1980)  pp. 55–65</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Davenport,  "Multiplicative number theory" , Springer  (1980)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  A.F. Lavrik,  "A survey of Linnik's large sieve and the density theory of zeros of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108023.png" />-functions"  ''Russian Math. Surveys'' , '''35''' :  2  (1980)  pp. 63–76  ''Uspekhi Mat. Nauk'' , '''35''' :  2  (1980)  pp. 55–65</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
For extra references see also [[Density method|Density method]]. Cf. also [[Distribution of prime numbers|Distribution of prime numbers]].
 
For extra references see also [[Density method|Density method]]. Cf. also [[Distribution of prime numbers|Distribution of prime numbers]].
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108024.png" /> be the double sum in (2) above. Then the estimates of A.I. Vinogradov [[#References|[a1]]], [[#References|[a2]]] and E. Bombieri [[#References|[a3]]] (the Bombieri–Vinogradov theorem) are, respectively,
+
Let $  N _ {2} $
 +
be the double sum in (2) above. Then the estimates of A.I. Vinogradov [[#References|[a1]]], [[#References|[a2]]] and E. Bombieri [[#References|[a3]]] (the Bombieri–Vinogradov theorem) are, respectively,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108025.png" /></td> </tr></table>
+
$$
 +
N _ {2}  \ll  \
 +
k ^ {3 - 2 \sigma + \epsilon }
 +
( T  \mathop{\rm log}  k) ^ {c _ {0} \epsilon  ^ {-} 4 }
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108026.png" /></td> </tr></table>
+
$$
 +
N _ {2}  \ll  \
 +
T ( k  ^ {2} + kT) ^ {4 ( 3 - 2 \sigma )  ^ {-} 1 ( 1 - \sigma ) } \
 +
\mathop{\rm log}  ^ {10}  ( kT).
 +
$$
 +
 
 +
Let  $  N _ {1} $
 +
be the sum in (1) above. More recent results on  $  N _ {1} $
 +
and  $  N _ {2} $
 +
for, respectively,  $  1/2 \leq  \sigma \leq  3/4 $,
 +
$  3/4 \leq  \sigma \leq  4/5 $
 +
and  $  4/5 \leq  \sigma \leq  1 $
 +
are due to H.L. Montgomery, M.N. Huxley, and M. Jutila and are, respectively (cf. [[#References|[2]]]),
 +
 
 +
$$
 +
N _ {1}  \ll  ( kT) ^ {3 ( 2 - \sigma )  ^ {-} 1 ( 1 - \sigma ) } \
 +
\mathop{\rm log}  ^ {9}  ( kT),\ \
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108027.png" /> be the sum in (1) above. More recent results on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108029.png" /> for, respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108032.png" /> are due to H.L. Montgomery, M.N. Huxley, and M. Jutila and are, respectively (cf. [[#References|[2]]]),
+
\frac{1}{2}
 +
\leq  \sigma \leq 
 +
\frac{3}{4}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108033.png" /></td> </tr></table>
+
$$
 +
N _ {1}  \ll  ( kT) ^ {3 ( 3 \sigma - 1)  ^ {-} 1 ( 1 - \sigma
 +
) + \epsilon } ,\ 
 +
\frac{3}{4}
 +
\leq  \sigma \leq 
 +
\frac{4}{5}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108034.png" /></td> </tr></table>
+
$$
 +
N _ {1}  \ll  ( kT) ^ {( 2 + \epsilon ) ( 1 - \sigma ) } ,\ 
 +
\frac{4}{5}
 +
\leq  \sigma \leq  1 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108035.png" /></td> </tr></table>
+
and for  $  N _ {2} $,
  
and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108036.png" />,
+
$$
 +
N _ {2}  \ll  ( k  ^ {2} T) ^ {3 ( 2 - \sigma )  ^ {-} 1 ( 1 - \sigma ) } \
 +
\mathop{\rm log}  ^ {14}  ( kT) ,\ \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108037.png" /></td> </tr></table>
+
\frac{1}{2}
 +
\leq  \sigma \leq 
 +
\frac{3}{4}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108038.png" /></td> </tr></table>
+
$$
 +
N _ {2}  \ll  ( k  ^ {2} T) ^ {3 ( 3 \sigma - 1)  ^ {-} 1 ( 1
 +
- \sigma ) + \epsilon } ,\ 
 +
\frac{3}{4}
 +
\leq  \sigma \leq 
 +
\frac{4}{5}
 +
,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108039.png" /></td> </tr></table>
+
$$
 +
N _ {2}  \ll  ( k  ^ {2} T) ,\ 
 +
\frac{4}{5}
 +
\leq  \sigma \leq  1 .
 +
$$
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.I. Vinogradov,  "The density hypothesis for Dirichlet <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031080/d03108040.png" />-series"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29'''  (1965)  pp. 903–934  (In Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A.I. Vinogradov,  "Correction to  "The density hypothesis for Dirichlet L-series" "  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30'''  (1966)  pp. 719–720  (In Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Bombieri,  "On the large sieve"  ''Mathematika'' , '''12'''  (1965)  pp. 201–225</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A.I. Vinogradov,  "The density hypothesis for Dirichlet L-series"  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29'''  (1965)  pp. 903–934  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A.I. Vinogradov,  "Correction to  "The density hypothesis for Dirichlet L-series" "  ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''30'''  (1966)  pp. 719–720  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Bombieri,  "On the large sieve"  ''Mathematika'' , '''12'''  (1965)  pp. 201–225</TD></TR>
 +
</table>

Latest revision as of 09:02, 6 January 2024


A proposed inequality providing a bound for the number $ N( \sigma , T) $ of zeros $ \rho = \beta + i \gamma $ of the Riemann zeta-function

$$ \zeta ( s) = \sum _ {n=1} ^ \infty \frac{1}{n ^ {s} } , $$

where $ s = \sigma + it $, in the rectangle $ 1/2< \sigma \leq \beta \leq 1 $, $ | \gamma | \leq T $.

The most exact formulation of the density hypothesis is

$$ N( \sigma , T) \leq cT ^ {2( 1- \sigma ) } \mathop{\rm ln} ^ {A} T. $$

A simpler, but less accurate, form of the density hypothesis is

$$ N( \sigma , T) \leq cT ^ {2( 1- \sigma )+ \epsilon } . $$

The density hypothesis enables one to obtain results in the theory of prime numbers that are comparable with those following from the Riemann hypothesis. For example, it follows from the density hypothesis that for sufficiently large $ x $ there is at least one prime number in each segment $ [ x, x+ x ^ {\epsilon + 1/2 } ] $.

The density hypothesis is a consequence of the stronger Lindelöf hypothesis. A difference from the latter is that the density hypothesis has been partially proved, in terms of various density theorems, beginning with certain values $ \sigma \geq \sigma _ {0} > 1/2 $.

For the number $N(\sigma, T, \chi)$ of zeros of Dirichlet $L$-functions

$$ L( s, \chi ) = \sum _ {n=1} ^ \infty \frac{\chi ( n, k) }{n ^ {s} } , $$

where $ \chi ( n, k) $ is a character modulo $ k $, an analogous density hypothesis is posed. In averaged form, this is

$$ \tag{1 } \sum _ {\chi \mathop{\rm mod} k } N( \sigma , T, \chi ) \leq c( kT) ^ {2( 1- \sigma )+ \epsilon } , $$

$$ \tag{2 } \sum _ {k\leq Q } \sum _ {\chi ^ {*} \mathop{\rm mod} k } N( \sigma , T, \chi ^ {*} ) \leq c( k ^ {2} T) ^ {2( 1- \sigma )+ \epsilon } , $$

where $ \chi ^ {*} $ is a primitive character modulo $ k $.

The density hypothesis for Dirichlet $ L $ functions is used in the theory of the distribution of prime numbers belonging to arithmetic progressions.

References

[1] H. Davenport, "Multiplicative number theory" , Springer (1980)
[2] A.F. Lavrik, "A survey of Linnik's large sieve and the density theory of zeros of -functions" Russian Math. Surveys , 35 : 2 (1980) pp. 63–76 Uspekhi Mat. Nauk , 35 : 2 (1980) pp. 55–65

Comments

For extra references see also Density method. Cf. also Distribution of prime numbers.

Let $ N _ {2} $ be the double sum in (2) above. Then the estimates of A.I. Vinogradov [a1], [a2] and E. Bombieri [a3] (the Bombieri–Vinogradov theorem) are, respectively,

$$ N _ {2} \ll \ k ^ {3 - 2 \sigma + \epsilon } ( T \mathop{\rm log} k) ^ {c _ {0} \epsilon ^ {-} 4 } $$

and

$$ N _ {2} \ll \ T ( k ^ {2} + kT) ^ {4 ( 3 - 2 \sigma ) ^ {-} 1 ( 1 - \sigma ) } \ \mathop{\rm log} ^ {10} ( kT). $$

Let $ N _ {1} $ be the sum in (1) above. More recent results on $ N _ {1} $ and $ N _ {2} $ for, respectively, $ 1/2 \leq \sigma \leq 3/4 $, $ 3/4 \leq \sigma \leq 4/5 $ and $ 4/5 \leq \sigma \leq 1 $ are due to H.L. Montgomery, M.N. Huxley, and M. Jutila and are, respectively (cf. [2]),

$$ N _ {1} \ll ( kT) ^ {3 ( 2 - \sigma ) ^ {-} 1 ( 1 - \sigma ) } \ \mathop{\rm log} ^ {9} ( kT),\ \ \frac{1}{2} \leq \sigma \leq \frac{3}{4} , $$

$$ N _ {1} \ll ( kT) ^ {3 ( 3 \sigma - 1) ^ {-} 1 ( 1 - \sigma ) + \epsilon } ,\ \frac{3}{4} \leq \sigma \leq \frac{4}{5} , $$

$$ N _ {1} \ll ( kT) ^ {( 2 + \epsilon ) ( 1 - \sigma ) } ,\ \frac{4}{5} \leq \sigma \leq 1 , $$

and for $ N _ {2} $,

$$ N _ {2} \ll ( k ^ {2} T) ^ {3 ( 2 - \sigma ) ^ {-} 1 ( 1 - \sigma ) } \ \mathop{\rm log} ^ {14} ( kT) ,\ \ \frac{1}{2} \leq \sigma \leq \frac{3}{4} , $$

$$ N _ {2} \ll ( k ^ {2} T) ^ {3 ( 3 \sigma - 1) ^ {-} 1 ( 1 - \sigma ) + \epsilon } ,\ \frac{3}{4} \leq \sigma \leq \frac{4}{5} , $$

$$ N _ {2} \ll ( k ^ {2} T) ,\ \frac{4}{5} \leq \sigma \leq 1 . $$

References

[a1] A.I. Vinogradov, "The density hypothesis for Dirichlet L-series" Izv. Akad. Nauk SSSR Ser. Mat. , 29 (1965) pp. 903–934 (In Russian)
[a2] A.I. Vinogradov, "Correction to "The density hypothesis for Dirichlet L-series" " Izv. Akad. Nauk SSSR Ser. Mat. , 30 (1966) pp. 719–720 (In Russian)
[a3] E. Bombieri, "On the large sieve" Mathematika , 12 (1965) pp. 201–225
How to Cite This Entry:
Density hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Density_hypothesis&oldid=16436
This article was adapted from an original article by B.M. Bredikhin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article