Namespaces
Variants
Actions

Difference between revisions of "Neumann series"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(latex details)
Line 14: Line 14:
  
 
$$  
 
$$  
\sum _ { n= } 0 ^  \infty   
+
\sum _ {n=0}^  \infty   
 
a _ {n} J _ {\nu + n }  ( z) ,
 
a _ {n} J _ {\nu + n }  ( z) ,
 
$$
 
$$
Line 30: Line 30:
 
$$  
 
$$  
 
f ( z)  = \  
 
f ( z)  = \  
\sum _ { n= } 0 ^  \infty   
+
\sum _ { n=0} ^  \infty   
 
a _ {n} J _ {n} ( z) ,
 
a _ {n} J _ {n} ( z) ,
 
$$
 
$$
Line 73: Line 73:
 
\cos  ( z  \sin  \phi )  = \  
 
\cos  ( z  \sin  \phi )  = \  
 
J _ {0} ( z) +
 
J _ {0} ( z) +
2 \sum _ { n= } 1 ^  \infty   
+
2 \sum _ { n=1}^  \infty   
 
J _ {2n} ( z)  \cos  2 n \phi ,
 
J _ {2n} ( z)  \cos  2 n \phi ,
 
$$
 
$$
  
 
$$  
 
$$  
\sin  ( z  \sin  \phi )  =  2 \sum _ { n= } 1 ^  \infty  J _ {2n-} 1 ( z)  \sin  ( 2n - 1 ) \phi ,
+
\sin  ( z  \sin  \phi )  =  2 \sum _ { n=1}^  \infty  J _ {2n-} 1 ( z)  \sin  ( 2n - 1 ) \phi ,
 
$$
 
$$
  
Line 84: Line 84:
 
\left ( {
 
\left ( {
 
\frac{z}{2}
 
\frac{z}{2}
  } \right )  ^  \mu  =  \sum _ { n= } 0 ^  \infty   
+
  } \right )  ^  \mu  =  \sum _ { n=0} ^  \infty   
 
\frac{( \mu + 2n ) \Gamma ( \mu + n ) }{n ! }
 
\frac{( \mu + 2n ) \Gamma ( \mu + n ) }{n ! }
 
  J _ {\mu + 2n }  ( z) ,
 
  J _ {\mu + 2n }  ( z) ,
Line 107: Line 107:
 
$$ \tag{2 }
 
$$ \tag{2 }
 
R ( x , s ;  \lambda )  = \  
 
R ( x , s ;  \lambda )  = \  
\sum _ { n= } 1 ^  \infty   
+
\sum _ { n=1} ^  \infty   
 
\lambda  ^ {n} K _ {n} ( x , s ) ,
 
\lambda  ^ {n} K _ {n} ( x , s ) ,
 
$$
 
$$
Line 127: Line 127:
  
 
$$ \tag{3 }
 
$$ \tag{3 }
\phi ( x)  =  f ( x) + \sum _ { k= } 1 ^  \infty  \lambda  ^ {n}
+
\phi ( x)  =  f ( x) + \sum _ { k=1} ^  \infty  \lambda  ^ {n}
 
\int\limits _ { a } ^ { b }  K _ {n} ( x , s ) f ( s)  ds .
 
\int\limits _ { a } ^ { b }  K _ {n} ( x , s ) f ( s)  ds .
 
$$
 
$$
Line 140: Line 140:
 
Then the operator  $  I - A $,  
 
Then the operator  $  I - A $,  
 
where  $  I $
 
where  $  I $
is the identity operator, has a unique bounded inverse  $  ( I - A )  ^ {-} 1 $,  
+
is the identity operator, has a unique bounded inverse  $  ( I - A )  ^ {-1} $,  
 
which admits the expansion
 
which admits the expansion
  
 
$$ \tag{4 }
 
$$ \tag{4 }
( I - A )  ^ {-} 1 = \  
+
( I - A )  ^ {-1}  = \  
\sum _ { n= } 0 ^  \infty  A  ^ {n} .
+
\sum _ { n=0} ^  \infty  A  ^ {n} .
 
$$
 
$$
  
Line 160: Line 160:
  
 
$$ \tag{a1 }
 
$$ \tag{a1 }
\sum _ { n= } 0 ^  \infty  A  ^ {n} f
+
\sum _ { n=0}^  \infty  A  ^ {n} f
 
$$
 
$$
  
Line 167: Line 167:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Smithies,  "Integral equations" , Cambridge Univ. Press  (1970)  pp. Chapt. II</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Suzuki,  "On the convergence of Neumann series in Banach space"  ''Math. Ann.'' , '''220'''  (1976)  pp. 143–146</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.W. Engl,  "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius"  ''J. Integral Eq.'' , '''8'''  (1985)  pp. 239–247</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A.E. Taylor,  D.C. Lay,  "Introduction to functional analysis" , Wiley  (1980)  pp. Chapt. 5</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  F. Smithies,  "Integral equations" , Cambridge Univ. Press  (1970)  pp. Chapt. II</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N. Suzuki,  "On the convergence of Neumann series in Banach space"  ''Math. Ann.'' , '''220'''  (1976)  pp. 143–146</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.W. Engl,  "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius"  ''J. Integral Eq.'' , '''8'''  (1985)  pp. 239–247</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I.C. Gohberg,  S. Goldberg,  "Basic operator theory" , Birkhäuser  (1981)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  A.E. Taylor,  D.C. Lay,  "Introduction to functional analysis" , Wiley  (1980)  pp. Chapt. 5</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR>
 +
</table>

Revision as of 08:55, 6 January 2024


A series of the form

$$ \sum _ {n=0}^ \infty a _ {n} J _ {\nu + n } ( z) , $$

where $ J _ {\nu + n } $ is the Bessel function (cylinder function of the first kind, cf. Bessel functions) and $ \nu $ is a (real or complex) number. C.G. Neumann

considered the special case when $ \nu $ is an integer. He showed that if $ f ( z) $ is an analytic function in a closed disc with centre at the coordinate origin, $ z $ is an interior point and $ C $ denotes the boundary of the disc, then

$$ f ( z) = \ \sum _ { n=0} ^ \infty a _ {n} J _ {n} ( z) , $$

where

$$ a _ {0} = f ( 0) ,\ \ a _ {n} = \frac{1}{\pi i } \int\limits _ { C } O _ {n} ( t) f ( t) dt $$

and $ O _ {n} $ is a polynomial of degree $ n+ 1 $ in $ 1 / t $:

$$ O _ {0} ( t) = \frac{1}{t} , $$

$$ O _ {n} ( t) = \frac{1}{2 t ^ {n+} 1 } \times $$

$$ \times \int\limits _ { 0 } ^ \infty e ^ {-} x [ ( x + \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} + ( x - \sqrt {x ^ {2} + t ^ {2} } ) ^ {n} ] dx ,\ n \geq 1 ; $$

it is usually called the Neumann polynomial of order $ n $. (Neumann himself called it a Bessel function of second order. Nowadays this term is used to denote one of the solutions of the Bessel equation.) Examples of the representation of functions by means of a Neumann series:

$$ \cos ( z \sin \phi ) = \ J _ {0} ( z) + 2 \sum _ { n=1}^ \infty J _ {2n} ( z) \cos 2 n \phi , $$

$$ \sin ( z \sin \phi ) = 2 \sum _ { n=1}^ \infty J _ {2n-} 1 ( z) \sin ( 2n - 1 ) \phi , $$

$$ \left ( { \frac{z}{2} } \right ) ^ \mu = \sum _ { n=0} ^ \infty \frac{( \mu + 2n ) \Gamma ( \mu + n ) }{n ! } J _ {\mu + 2n } ( z) , $$

where $ \mu $ is an arbitrary number not equal to a non-negative integer and $ \Gamma $ is the gamma-function.

In the theory of Fredholm integral equations (cf. Fredholm equation)

$$ \tag{1 } \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x , s ) \phi ( s) ds = \ f ( x) ,\ \ x \in [ a , b ] , $$

a Neumann series is defined as the expansion of the resolvent $ R ( x , s ; \lambda ) $ of the kernel $ K $:

$$ \tag{2 } R ( x , s ; \lambda ) = \ \sum _ { n=1} ^ \infty \lambda ^ {n} K _ {n} ( x , s ) , $$

where the $ K _ {n} $ are the iterated kernels (of $ K $), which are defined by the recurrence formulas

$$ K _ {1} ( x , s ) = K ( x , s ) , $$

$$ K _ {n} ( x , s ) = \int\limits _ { a } ^ { b } K _ {n-} 1 ( x , t ) K ( t , s ) dt ,\ n \geq 2 . $$

By means of (2) the solution of (1) for small $ \lambda $ can be represented by

$$ \tag{3 } \phi ( x) = f ( x) + \sum _ { k=1} ^ \infty \lambda ^ {n} \int\limits _ { a } ^ { b } K _ {n} ( x , s ) f ( s) ds . $$

The last series is also called a Neumann series. In

the series (3) is considered in the case of an equation (1) to which the Dirichlet problem in potential theory reduces.

Let $ A $ be a bounded linear operator mapping a Banach space $ X $ into itself, with norm $ \| A \| < 1 $. Then the operator $ I - A $, where $ I $ is the identity operator, has a unique bounded inverse $ ( I - A ) ^ {-1} $, which admits the expansion

$$ \tag{4 } ( I - A ) ^ {-1} = \ \sum _ { n=0} ^ \infty A ^ {n} . $$

In the theory of linear operators this series is called a Neumann series. The series

can be regarded as a special case of (4).

References

[1] C.G. Neumann, "Theorie der Besselschen Funktionen" , Teubner (1867)
[2] C.G. Neumann, "Untersuchungen über das logarithmische und Newtonsche Potential" , Teubner (1877)
[3] G.N. Watson, "A treatise on the theory of Bessel functions" , 1 , Cambridge Univ. Press (1952)
[4] R.O. Kuz'min, "Bessel functions" , Moscow-Leningrad (1035) (In Russian)
[5] K. Yosida, "Functional analysis" , Springer (1965)
[6] F.G. Tricomi, "Integral equations" , Interscience (1957)

Comments

The series (4), applied to a specific vector $ f $, i.e.

$$ \tag{a1 } \sum _ { n=0}^ \infty A ^ {n} f $$

may converge also if $ \| A \| \geq 1 $. For necessary and sufficient conditions for convergence see [a2] (or [a3]).

References

[a1] F. Smithies, "Integral equations" , Cambridge Univ. Press (1970) pp. Chapt. II
[a2] N. Suzuki, "On the convergence of Neumann series in Banach space" Math. Ann. , 220 (1976) pp. 143–146
[a3] H.W. Engl, "A successive-approximation method for solving equations of the second kind with arbitrary spectral radius" J. Integral Eq. , 8 (1985) pp. 239–247
[a4] I.C. Gohberg, S. Goldberg, "Basic operator theory" , Birkhäuser (1981)
[a5] A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) pp. Chapt. 5
[a6] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Neumann series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Neumann_series&oldid=47960
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article