Difference between revisions of "Euler polynomials"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 14: | Line 14: | ||
$$ | $$ | ||
− | E _ {n} ( x) = \sum _ { k= } | + | E _ {n} ( x) = \sum _ { k=0}^ { n } \left ( \begin{array}{c} |
n \\ | n \\ | ||
k | k | ||
Line 24: | Line 24: | ||
\left ( x - | \left ( x - | ||
\frac{1}{2} | \frac{1}{2} | ||
− | \right ) ^ {n-} | + | \right ) ^ {n-k} , |
$$ | $$ | ||
where $ E _ {k} $ | where $ E _ {k} $ | ||
− | are the [[ | + | are the [[Euler numbers]]. The Euler polynomials can be computed successively by means of the formula |
$$ | $$ | ||
− | E _ {n} ( x) + \sum _ { s= } | + | E _ {n} ( x) + \sum _ { s=0} ^ { n } \left ( \begin{array}{c} |
n \\ | n \\ | ||
s | s | ||
Line 69: | Line 69: | ||
\frac{2 e ^ {xt} }{e ^ {t} + 1 } | \frac{2 e ^ {xt} }{e ^ {t} + 1 } | ||
= \ | = \ | ||
− | \sum _ { n= } | + | \sum _ { n=0}^ \infty |
\frac{E _ {n} ( x) }{n!} | \frac{E _ {n} ( x) }{n!} | ||
t ^ {n} . | t ^ {n} . | ||
Line 77: | Line 77: | ||
$$ \tag{* } | $$ \tag{* } | ||
− | E _ {n} ( x) = n! | + | E _ {n} ( x) = \frac{n!} {\pi ^ {n+ 1 }} \sum _ { k=0} ^ \infty |
− | \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+} | + | \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+1} } |
, | , | ||
$$ | $$ | ||
Line 94: | Line 94: | ||
$$ | $$ | ||
− | E _ {n} ( mx) = m ^ {n} \sum _ { k= } | + | E _ {n} ( mx) = m ^ {n} \sum _ { k=0} ^ { m-1} ( - 1 |
) ^ {k} E _ {n} \left ( x + | ) ^ {k} E _ {n} \left ( x + | ||
\frac{k}{m} | \frac{k}{m} | ||
Line 105: | Line 105: | ||
$$ | $$ | ||
E _ {n} ( mx) = - | E _ {n} ( mx) = - | ||
− | \frac{2 m ^ {n} }{n+} | + | \frac{2 m ^ {n} }{n+1} |
− | + | \sum _ { k=0} ^ { m-1} ( - 1 ) ^ {k} B _ {n+1} | |
− | \sum _ { k= } | ||
\left ( x + | \left ( x + | ||
\frac{k}{m} | \frac{k}{m} | ||
Line 114: | Line 113: | ||
if $ m $ | if $ m $ | ||
− | is even. Here | + | is even. Here $B_{n+1}$ |
− | is a Bernoulli polynomial (cf. [[ | + | is a Bernoulli polynomial (cf. [[Bernoulli polynomials]]). The periodic functions coinciding with the right-hand side of (*) are extremal in the [[Kolmogorov inequality]] and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
Line 133: | Line 135: | ||
1 | 1 | ||
\end{array} | \end{array} | ||
− | \right ) h E _ {n-} | + | \right ) h E _ {n-1} ( x) + \dots + |
\left ( \begin{array}{c} | \left ( \begin{array}{c} | ||
n \\ | n \\ | ||
n- 1 | n- 1 | ||
\end{array} | \end{array} | ||
− | \right ) h ^ {n-} | + | \right ) h ^ {n-1} E _ {1} ( x) + E _ {0} ( x), |
$$ | $$ | ||
Line 147: | Line 149: | ||
$$ | $$ | ||
− | Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-} | + | Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-i} $ |
and then replace $ \{ E ( x) \} ^ {i} $ | and then replace $ \{ E ( x) \} ^ {i} $ | ||
with $ E _ {i} ( x) $. | with $ E _ {i} ( x) $. |
Latest revision as of 08:36, 6 January 2024
Polynomials of the form
$$ E _ {n} ( x) = \sum _ { k=0}^ { n } \left ( \begin{array}{c} n \\ k \end{array} \right ) \frac{E _ k}{2 ^ {k}} \left ( x - \frac{1}{2} \right ) ^ {n-k} , $$
where $ E _ {k} $ are the Euler numbers. The Euler polynomials can be computed successively by means of the formula
$$ E _ {n} ( x) + \sum _ { s=0} ^ { n } \left ( \begin{array}{c} n \\ s \end{array} \right ) E _ {s} ( x) = 2 x ^ {n} . $$
In particular,
$$ E _ {0} ( x) = 1 ,\ \ E _ {1} ( x) = x - \frac{1}{2} ,\ \ E _ {2} ( x) = x ( x - 1 ) . $$
The Euler polynomials satisfy the difference equation
$$ E _ {n} ( x + 1 ) + E _ {n} ( x) = 2 x ^ {n} $$
and belong to the class of Appell polynomials, that is, they satisfy
$$ \frac{d}{dx} E _ {n} ( x) = n E _ {n-} 1 ( x) . $$
The generating function of the Euler polynomials is
$$ \frac{2 e ^ {xt} }{e ^ {t} + 1 } = \ \sum _ { n=0}^ \infty \frac{E _ {n} ( x) }{n!} t ^ {n} . $$
The Euler polynomials admit the Fourier expansion
$$ \tag{* } E _ {n} ( x) = \frac{n!} {\pi ^ {n+ 1 }} \sum _ { k=0} ^ \infty \frac{\cos [ ( 2 k + 1 ) \pi x + ( n+ 1) \pi / 2 ] }{( 2 k + 1 ) ^ {n+1} } , $$
$$ 0 \leq x \leq 1 ,\ n \geq 1 . $$
They satisfy the relations
$$ E _ {n} ( 1 - x ) = ( - 1 ) ^ {n} E _ {n} ( x) , $$
$$ E _ {n} ( mx) = m ^ {n} \sum _ { k=0} ^ { m-1} ( - 1 ) ^ {k} E _ {n} \left ( x + \frac{k}{m} \right ) $$
if $ m $ is odd,
$$ E _ {n} ( mx) = - \frac{2 m ^ {n} }{n+1} \sum _ { k=0} ^ { m-1} ( - 1 ) ^ {k} B _ {n+1} \left ( x + \frac{k}{m} \right ) $$
if $ m $ is even. Here $B_{n+1}$ is a Bernoulli polynomial (cf. Bernoulli polynomials). The periodic functions coinciding with the right-hand side of (*) are extremal in the Kolmogorov inequality and in a number of other extremal problems in function theory. Generalized Euler polynomials have also been considered.
References
[1] | L. Euler, "Opera omnia: series prima: opera mathematica: institutiones calculi differentialis" , Teubner (1980) (Translated from Latin) |
[2] | N.E. Nörlund, "Volesungen über Differenzenrechnung" , Springer (1924) |
Comments
The Euler polynomials satisfy in addition the identities
$$ E _ {n} ( x+ h) = $$
$$ = \ E _ {n} ( x) + \left ( \begin{array}{c} n \\ 1 \end{array} \right ) h E _ {n-1} ( x) + \dots + \left ( \begin{array}{c} n \\ n- 1 \end{array} \right ) h ^ {n-1} E _ {1} ( x) + E _ {0} ( x), $$
written symbolically as
$$ E _ {n} ( x+ h) = \{ E ( x) + h \} ^ {n} . $$
Here the right-hand side should be read as follows: first expand the right-hand side into sums of expressions $ ( {} _ {i} ^ {n} ) \{ E ( x) \} ^ {i} h ^ {n-i} $ and then replace $ \{ E ( x) \} ^ {i} $ with $ E _ {i} ( x) $.
Using the same symbolic notation one has for every polynomial $ p( x) $,
$$ p ( E ( x) + 1) + p( E( x) ) = 2 p( x) . $$
Euler polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler_polynomials&oldid=46860