Namespaces
Variants
Actions

Difference between revisions of "BCI-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m (partial latex)
Line 1: Line 1:
Algebras introduced by K. Iséki in [[#References|[a4]]] as a generalized version of BCK-algebras (cf. [[BCK-algebra|BCK-algebra]]). The latter were developed by Iséki and S. Tannaka in [[#References|[a6]]] to generalize the set difference in set theory, and by Y. Imai and Iséki in [[#References|[a3]]] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. [[Abelian group|Abelian group]]) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a [[binary relation]] $\star$ and a constant $0$ satisfying
+
Algebras introduced by K. Iséki in [[#References|[a4]]] as a generalized version of BCK-algebras (cf. [[BCK-algebra|BCK-algebra]]). The latter were developed by Iséki and S. Tannaka in [[#References|[a6]]] to generalize the set difference in set theory, and by Y. Imai and Iséki in [[#References|[a3]]] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. [[Abelian group]]) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a [[binary relation]] $\ast$ and a constant $0$ satisfying
  
 
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101804.png" />;
 
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101804.png" />;
Line 5: Line 5:
 
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101805.png" />;
 
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101805.png" />;
  
iii) $x \star x = 0$;
+
iii) $x \ast x = 0$;
  
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101807.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101808.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101809.png" />;
+
iv) $x \ast y = 0$ and $y \ast x = 0$ imply that $x = y$;
  
v) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018010.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018011.png" />. A [[Partial order|partial order]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018012.png" /> may be defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018013.png" /> if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018014.png" />. A very useful identity satisfied by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018015.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018016.png" />. One can then develop many of the usual algebraic concepts. An [[Ideal|ideal]] is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018017.png" /> with the properties that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018018.png" /> and that whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018020.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018021.png" />. The ideal is implicative if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018023.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018024.png" />. It is known that one always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018025.png" />. An ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018026.png" /> is closed if whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018027.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018028.png" />. While ideals in general are not subalgebras, closed ideals are. A subalgebra simply means a subset containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018029.png" /> and closed under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018030.png" /> that is itself a BCI-algebra under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018031.png" />.
+
v) $x \ast 0 = 0$ implies that $x=0$.
 +
 
 +
A [[partial order]] $\leq$ may be defined by $x \leq y$ if and only if $x \ast y = 0$. A very useful identity satisfied by $X$ is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018016.png" />. One can then develop many of the usual algebraic concepts. An [[Ideal|ideal]] is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018017.png" /> with the properties that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018018.png" /> and that whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018019.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018020.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018021.png" />. The ideal is implicative if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018023.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018024.png" />. It is known that one always has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018025.png" />. An ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018026.png" /> is closed if whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018027.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018028.png" />. While ideals in general are not subalgebras, closed ideals are. A subalgebra simply means a subset containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018029.png" /> and closed under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018030.png" /> that is itself a BCI-algebra under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018031.png" />.
  
 
The subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018032.png" /> of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018033.png" /> forms an ideal, called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018035.png" />-radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018036.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018037.png" /> is a [[BCK-algebra|BCK-algebra]] if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018039.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018041.png" />-semi-simple if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018042.png" />. In the latter case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018043.png" /> satisfies the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018044.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018046.png" />. It then follows that one can define an operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018047.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018048.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018049.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018050.png" />. This makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018051.png" /> into an [[Abelian group|Abelian group]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018052.png" /> as the identity. Conversely, every Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018053.png" /> can be given a BCI-algebra structure by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018054.png" />. It follows that the category of Abelian groups is equivalent to the subcategory of the category of BCI-algebras formed by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018055.png" />-semi-simple BCI-algebras. Here, a [[Homomorphism|homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018056.png" /> from one BCI-algebra to another is a function satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018057.png" />. In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018058.png" /> always contains a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018059.png" />-semi-simple BCI-subalgebra, namely its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018060.png" />-semi-simple part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018061.png" />. Of course, also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018062.png" />, since it can be verified easily that the induced partial order in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018063.png" />-semi-simple BCI-algebra is always trivial. Clearly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018064.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018065.png" />-semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018066.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018067.png" /> is a BCK-algebra if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018068.png" />. Note that for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018069.png" />-semi-simple BCI-algebra, the closed ideals are precisely the subgroups of the associated Abelian group structure.
 
The subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018032.png" /> of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018033.png" /> forms an ideal, called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018035.png" />-radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018036.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018037.png" /> is a [[BCK-algebra|BCK-algebra]] if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018038.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018039.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018041.png" />-semi-simple if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018042.png" />. In the latter case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018043.png" /> satisfies the identity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018044.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018046.png" />. It then follows that one can define an operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018047.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018048.png" /> by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018049.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018050.png" />. This makes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018051.png" /> into an [[Abelian group|Abelian group]] with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018052.png" /> as the identity. Conversely, every Abelian group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018053.png" /> can be given a BCI-algebra structure by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018054.png" />. It follows that the category of Abelian groups is equivalent to the subcategory of the category of BCI-algebras formed by the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018055.png" />-semi-simple BCI-algebras. Here, a [[Homomorphism|homomorphism]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018056.png" /> from one BCI-algebra to another is a function satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018057.png" />. In general, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018058.png" /> always contains a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018059.png" />-semi-simple BCI-subalgebra, namely its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018060.png" />-semi-simple part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018061.png" />. Of course, also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018062.png" />, since it can be verified easily that the induced partial order in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018063.png" />-semi-simple BCI-algebra is always trivial. Clearly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018064.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018065.png" />-semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018066.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018067.png" /> is a BCK-algebra if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018068.png" />. Note that for a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b11018069.png" />-semi-simple BCI-algebra, the closed ideals are precisely the subgroups of the associated Abelian group structure.

Revision as of 20:29, 13 December 2023

Algebras introduced by K. Iséki in [a4] as a generalized version of BCK-algebras (cf. BCK-algebra). The latter were developed by Iséki and S. Tannaka in [a6] to generalize the set difference in set theory, and by Y. Imai and Iséki in [a3] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. Abelian group) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a binary relation $\ast$ and a constant $0$ satisfying

i) ;

ii) ;

iii) $x \ast x = 0$;

iv) $x \ast y = 0$ and $y \ast x = 0$ imply that $x = y$;

v) $x \ast 0 = 0$ implies that $x=0$.

A partial order $\leq$ may be defined by $x \leq y$ if and only if $x \ast y = 0$. A very useful identity satisfied by $X$ is . One can then develop many of the usual algebraic concepts. An ideal is a set with the properties that and that whenever and , then . The ideal is implicative if and imply that . It is known that one always has . An ideal is closed if whenever then . While ideals in general are not subalgebras, closed ideals are. A subalgebra simply means a subset containing and closed under that is itself a BCI-algebra under .

The subset of all elements forms an ideal, called the -radical of . The algebra is a BCK-algebra if and only if , and is -semi-simple if and only if . In the latter case, satisfies the identity for all and . It then follows that one can define an operation on by , and . This makes into an Abelian group with as the identity. Conversely, every Abelian group can be given a BCI-algebra structure by . It follows that the category of Abelian groups is equivalent to the subcategory of the category of BCI-algebras formed by the -semi-simple BCI-algebras. Here, a homomorphism from one BCI-algebra to another is a function satisfying . In general, always contains a -semi-simple BCI-subalgebra, namely its -semi-simple part . Of course, also , since it can be verified easily that the induced partial order in a -semi-simple BCI-algebra is always trivial. Clearly, is -semi-simple if , and is a BCK-algebra if . Note that for a -semi-simple BCI-algebra, the closed ideals are precisely the subgroups of the associated Abelian group structure.

Some of the homological algebra properties of BCI-algebras are known. For example, it is known that a BCI-algebra is injective if and only if it is -semi-simple and its associated Abelian group structure is divisible (cf, also Divisible group).

Fuzzy ideals of BCI-algebras are described in [a1] and [a2].

References

[a1] C.S. Hoo, "Fuzzy ideals of BCI and MV-algebras" Fuzzy Sets and Systems , 62 (1994) pp. 111–114
[a2] C.S. Hoo, "Fuzzy implicative and Boolean ideals of MV-algebras" Fuzzy Sets and Systems , 66 (1994) pp. 315–327
[a3] Y. Imai, K. Iséki, "On axiom systems of propositional calculi, XIV" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 19–22
[a4] K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 26–29
[a5] K. Iséki, "On BCI-algebras" Math. Seminar Notes (Kobe University) , 8 (1980) pp. 125–130
[a6] K. Iséki, S. Tanaka, "An introduction to the theory of BCK-algebras" Math. Japon. , 23 (1978) pp. 1–26
How to Cite This Entry:
BCI-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=BCI-algebra&oldid=54781
This article was adapted from an original article by C.S. Hoo (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article