Namespaces
Variants
Actions

Difference between revisions of "BCI-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
Line 1: Line 1:
Algebras introduced by K. Iséki in [[#References|[a4]]] as a generalized version of BCK-algebras (cf. [[BCK-algebra|BCK-algebra]]). The latter were developed by Iséki and S. Tannaka in [[#References|[a6]]] to generalize the set difference in set theory, and by Y. Imai and Iséki in [[#References|[a3]]] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. [[Abelian group|Abelian group]]) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101801.png" /> with a [[Binary relation|binary relation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101802.png" /> and a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101803.png" /> satisfying
+
Algebras introduced by K. Iséki in [[#References|[a4]]] as a generalized version of BCK-algebras (cf. [[BCK-algebra|BCK-algebra]]). The latter were developed by Iséki and S. Tannaka in [[#References|[a6]]] to generalize the set difference in set theory, and by Y. Imai and Iséki in [[#References|[a3]]] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. [[Abelian group|Abelian group]]) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a [[binary relation]] $\star$ and a constant $0$ satisfying
  
 
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101804.png" />;
 
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101804.png" />;
Line 5: Line 5:
 
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101805.png" />;
 
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101805.png" />;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101806.png" />;
+
iii) $x \star x = 0$;
  
 
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101807.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101808.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101809.png" />;
 
iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101807.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101808.png" /> imply that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110180/b1101809.png" />;
Line 19: Line 19:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy ideals of BCI and MV-algebras"  ''Fuzzy Sets and Systems'' , '''62'''  (1994)  pp. 111–114</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy implicative and Boolean ideals of MV-algebras"  ''Fuzzy Sets and Systems'' , '''66'''  (1994)  pp. 315–327</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 19–22</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Iséki,  "On BCI-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''8'''  (1980)  pp. 125–130</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  K. Iséki,  S. Tanaka,  "An introduction to the theory of BCK-algebras"  ''Math. Japon.'' , '''23'''  (1978)  pp. 1–26</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy ideals of BCI and MV-algebras"  ''Fuzzy Sets and Systems'' , '''62'''  (1994)  pp. 111–114</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C.S. Hoo,  "Fuzzy implicative and Boolean ideals of MV-algebras"  ''Fuzzy Sets and Systems'' , '''66'''  (1994)  pp. 315–327</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  Y. Imai,  K. Iséki,  "On axiom systems of propositional calculi, XIV"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 19–22</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  K. Iséki,  "An algebra related with a propositional calculus"  ''Proc. Japan Acad. Ser. A, Math. Sci.'' , '''42'''  (1966)  pp. 26–29</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  K. Iséki,  "On BCI-algebras"  ''Math. Seminar Notes (Kobe University)'' , '''8'''  (1980)  pp. 125–130</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  K. Iséki,  S. Tanaka,  "An introduction to the theory of BCK-algebras"  ''Math. Japon.'' , '''23'''  (1978)  pp. 1–26</TD></TR></table>
 +
 +
{{TEX|want}}

Revision as of 20:25, 13 December 2023

Algebras introduced by K. Iséki in [a4] as a generalized version of BCK-algebras (cf. BCK-algebra). The latter were developed by Iséki and S. Tannaka in [a6] to generalize the set difference in set theory, and by Y. Imai and Iséki in [a3] as the algebras of certain propositional calculi. It turns out that Abelian groups (cf. Abelian group) are a special case of BCI-algebras. One may take different axiom systems for BCI-algebras, and one such system says that a BCI-algebra is a non-empty set $X$ with a binary relation $\star$ and a constant $0$ satisfying

i) ;

ii) ;

iii) $x \star x = 0$;

iv) and imply that ;

v) implies that . A partial order may be defined by if and only if . A very useful identity satisfied by is . One can then develop many of the usual algebraic concepts. An ideal is a set with the properties that and that whenever and , then . The ideal is implicative if and imply that . It is known that one always has . An ideal is closed if whenever then . While ideals in general are not subalgebras, closed ideals are. A subalgebra simply means a subset containing and closed under that is itself a BCI-algebra under .

The subset of all elements forms an ideal, called the -radical of . The algebra is a BCK-algebra if and only if , and is -semi-simple if and only if . In the latter case, satisfies the identity for all and . It then follows that one can define an operation on by , and . This makes into an Abelian group with as the identity. Conversely, every Abelian group can be given a BCI-algebra structure by . It follows that the category of Abelian groups is equivalent to the subcategory of the category of BCI-algebras formed by the -semi-simple BCI-algebras. Here, a homomorphism from one BCI-algebra to another is a function satisfying . In general, always contains a -semi-simple BCI-subalgebra, namely its -semi-simple part . Of course, also , since it can be verified easily that the induced partial order in a -semi-simple BCI-algebra is always trivial. Clearly, is -semi-simple if , and is a BCK-algebra if . Note that for a -semi-simple BCI-algebra, the closed ideals are precisely the subgroups of the associated Abelian group structure.

Some of the homological algebra properties of BCI-algebras are known. For example, it is known that a BCI-algebra is injective if and only if it is -semi-simple and its associated Abelian group structure is divisible (cf, also Divisible group).

Fuzzy ideals of BCI-algebras are described in [a1] and [a2].

References

[a1] C.S. Hoo, "Fuzzy ideals of BCI and MV-algebras" Fuzzy Sets and Systems , 62 (1994) pp. 111–114
[a2] C.S. Hoo, "Fuzzy implicative and Boolean ideals of MV-algebras" Fuzzy Sets and Systems , 66 (1994) pp. 315–327
[a3] Y. Imai, K. Iséki, "On axiom systems of propositional calculi, XIV" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 19–22
[a4] K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. Ser. A, Math. Sci. , 42 (1966) pp. 26–29
[a5] K. Iséki, "On BCI-algebras" Math. Seminar Notes (Kobe University) , 8 (1980) pp. 125–130
[a6] K. Iséki, S. Tanaka, "An introduction to the theory of BCK-algebras" Math. Japon. , 23 (1978) pp. 1–26
How to Cite This Entry:
BCI-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=BCI-algebra&oldid=12055
This article was adapted from an original article by C.S. Hoo (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article