Namespaces
Variants
Actions

Difference between revisions of "Riedtmann classification"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (latex done)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
A finite-dimensional [[Algebra|algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301001.png" /> over an [[Algebraically closed field|algebraically closed field]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301002.png" /> is called self-injective if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301003.png" />, considered as a right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301004.png" />-module, is injective (cf. also [[Injective module|Injective module]]). Well-known examples for self-injective algebras are the group algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301005.png" /> for finite groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301006.png" /> (cf. also [[Group algebra|Group algebra]]). An arbitrary finite-dimensional algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301007.png" /> is said to be representation-finite provided that there are only finitely many isomorphism classes of indecomposable finite-dimensional right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301008.png" />-modules.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct and if all png images have been replaced by TeX code, please remove this message and the {{TEX|semi-auto}} category.
  
C. Riedtmann made the main contribution to the classification of all self-injective algebras that are representation-finite. Her key idea was not to look at the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r1301009.png" /> itself, but rather at its Auslander–Reiten quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010010.png" />. (Quiver is an abbreviation for directed graph, see [[Quiver|Quiver]].) The vertices of the Auslander–Reiten quiver (see also [[Representation of an associative algebra|Representation of an associative algebra]]) are the isomorphism classes of finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010011.png" />-modules. The number of arrows from the isomorphism class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010012.png" /> to the isomorphism class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010013.png" /> is the dimension of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010015.png" /> is the [[Jacobson radical|Jacobson radical]] of the category of all finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010016.png" />-modules. The Auslander–Reiten quiver is a translation quiver, which means that it carries an additional structure, namely a translation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010017.png" /> mapping the non-projective vertices bijectively to the non-injective vertices. The translation is induced by the existence of almost-spit sequences <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010018.png" /> (see also [[Representation of an associative algebra|Representation of an associative algebra]]; [[Almost-split sequence|Almost-split sequence]]) and sends the isomorphism class of a non-projective indecomposable module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010019.png" /> to the starting term <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010020.png" />.
+
Out of 95 formulas, 94 were replaced by TEX code.-->
  
The stable part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010021.png" /> of the Auslander–Reiten quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010022.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010023.png" /> is the full subquiver of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010024.png" /> given by the modules that cannot be shifted into an injective or projective vertex by a power <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010025.png" /> for some integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010026.png" />. In [[#References|[a3]]], Riedtmann succeeded to prove that for any connected representation-finite finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010027.png" /> the stable part <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010028.png" /> of the Auslander–Reiten quiver is of the shape <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010030.png" /> is a quiver whose underlying graph <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010031.png" /> is a [[Dynkin diagram|Dynkin diagram]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010032.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010033.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010034.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010036.png" />), or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010037.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010038.png" />) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010039.png" /> is an infinite [[Cyclic group|cyclic group]] of automorphisms of the translation quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010040.png" />. The vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010041.png" /> are the pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010042.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010043.png" /> is an integer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010044.png" /> a vertex of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010045.png" />. From <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010046.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010047.png" /> there are the arrows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010048.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010049.png" /> an arrow of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010050.png" />. In addition, from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010051.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010052.png" /> there exist the arrows <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010053.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010054.png" /> an arrow of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010055.png" />. The translation maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010056.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010057.png" />.
+
{{TEX|semi-auto}}{{TEX|done}}
 +
A finite-dimensional [[algebra]] $A$ over an [[algebraically closed field]] $k$ is called self-injective if $A$, considered as a right $A$-module, is injective (cf. also [[Injective module]]). Well-known examples for self-injective algebras are the group algebras $k G$ for finite groups $G$ (cf. also [[Group algebra]]). An arbitrary finite-dimensional algebra $A$ is said to be representation-finite provided that there are only finitely many isomorphism classes of indecomposable finite-dimensional right $A$-modules.
  
For a self-injective algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010058.png" />, the only vertices of the Auslander–Reiten quiver that do not belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010059.png" /> are the isomorphism classes of the indecomposable projective (and injective) modules. Thus, one can reconstruct <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010060.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010061.png" /> by finding in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010062.png" /> the starting points of arrows of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010063.png" /> ending in projective vertices. These combinatorial data are called a configuration. This shows that for finding all possible Auslander–Reiten quivers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010064.png" /> of all connected representation-finite self-injective algebras <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010065.png" /> one has to classify the infinite cyclic automorphism groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010066.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010067.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010068.png" />-invariant configurations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010069.png" /> for all Dynkin diagrams. For the Dynkin diagrams <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010070.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010071.png" /> this classification was carried out in [[#References|[a4]]] and [[#References|[a5]]].
+
C. Riedtmann made the main contribution to the classification of all self-injective algebras that are representation-finite. Her key idea was not to look at the algebra $A$ itself, but rather at its Auslander–Reiten quiver $\Gamma_{A}$. (Quiver is an abbreviation for directed graph, see [[Quiver]].) The vertices of the Auslander–Reiten quiver (see also [[Representation of an associative algebra]]) are the isomorphism classes of finite-dimensional $A$-modules. The number of arrows from the isomorphism class of $X$ to the isomorphism class of $Y$ is the dimension of the space $\operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{ A } ^ { 2 } ( X , Y )$, where $\operatorname { rad }$ is the [[Jacobson radical]] of the category of all finite-dimensional $A$-modules. The Auslander–Reiten quiver is a translation quiver, which means that it carries an additional structure, namely a translation $\tau_{A}$ mapping the non-projective vertices bijectively to the non-injective vertices. The translation is induced by the existence of almost-spit sequences $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ (see also [[Representation of an associative algebra]]; [[Almost-split sequence]]) and sends the isomorphism class of a non-projective indecomposable module $Z$ to the starting term $X$.
  
The classification of the possible configurations for the exceptional Dynkin diagrams <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010073.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010074.png" /> turned out to be more difficult. Fortunately, the development of [[Tilting theory|tilting theory]] offered a convenient way for a solution. Namely, it was observed in [[#References|[a1]]] and [[#References|[a2]]] that in order to equip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010075.png" /> with all possible configurations, one has to form the Auslander–Reiten quivers of the repetitive algebras of the tilted algebras of representation-finite hereditary algebras of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010076.png" /> (cf. also [[Tilted algebra|Tilted algebra]]). Nevertheless, the full classification of all these repetitive algebras eventually obtained in [[#References|[a7]]] required the use of a computer for handling the huge amount of structures appearing in the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010077.png" />.
+
The stable part $( \Gamma _ { A } ) _ { s }$ of the Auslander–Reiten quiver $\Gamma _ { A }$ of $A$ is the full subquiver of $\Gamma _ { A }$ given by the modules that cannot be shifted into an injective or projective vertex by a power $\tau _ { A } ^ { j }$ for some integer $j$. In [[#References|[a3]]], Riedtmann succeeded to prove that for any connected representation-finite finite-dimensional $A$ the stable part $( \Gamma _ { A } ) _ { s }$ of the Auslander–Reiten quiver is of the shape $\mathbf{Z} \overset{\rightharpoonup}{ \Delta } / G$, where $\overset{\rightharpoonup} { \Delta }$ is a quiver whose underlying graph $\Delta$ is a [[Dynkin diagram]] $\mathbf{A} _ { n }$ ($n \in \mathbf N$), ${\bf D} _ { n }$ ($n \in \mathbf N$, $&gt; 4$), or $\mathbf{E} _ { n }$ ($n = 6,7,8$) and $G$ is an infinite [[Cyclic group|cyclic group]] of automorphisms of the translation quiver $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$. The vertices of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ are the pairs $( i , x )$ such that $i$ is an integer and $x$ a vertex of $\overset{\rightharpoonup} { \Delta }$. From $( i , x )$ to $( i , y )$ there are the arrows $( i , \alpha )$ with $\alpha : x \rightarrow y$ an arrow of $\overset{\rightharpoonup} { \Delta }$. In addition, from $( i + 1 , x )$ to $( i , y )$ there exist the arrows $( i , \alpha ) ^ { \prime }$ with $\alpha : y \rightarrow x$ an arrow of $\overset{\rightharpoonup} { \Delta }$. The translation maps $( i , x )$ to $( i + 1 , x )$.
  
If one finally wants to return from the Auslander–Reiten quiver <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010078.png" /> to the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010079.png" /> itself, one considers the factor of the free <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010080.png" />-linear category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010081.png" /> by the mesh relations induced by the almost-split sequences. This factor is called the mesh category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010082.png" />. Forming the endomorphism algebra of the direct sum of all projective objects in this mesh category yields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010083.png" /> (up to [[Morita equivalence|Morita equivalence]]), provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010084.png" /> is standard (i.e. the mesh category is equivalent to the category of indecomposable finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010085.png" />-modules). Non-standard algebras appear only if the characteristic of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010086.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010087.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010088.png" /> is of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010089.png" />. They were classified in [[#References|[a6]]] and [[#References|[a9]]].
+
For a self-injective algebra $A$, the only vertices of the Auslander–Reiten quiver that do not belong to $( \Gamma _ { A } ) _ { s }$ are the isomorphism classes of the indecomposable projective (and injective) modules. Thus, one can reconstruct $\Gamma _ { A }$ from $( \Gamma _ { A } ) _ { s }$ by finding in $( \Gamma _ { A } ) _ { s }$ the starting points of arrows of $\Gamma _ { A }$ ending in projective vertices. These combinatorial data are called a configuration. This shows that for finding all possible Auslander–Reiten quivers $\Gamma _ { A }$ of all connected representation-finite self-injective algebras $A$ one has to classify the infinite cyclic automorphism groups $G$ of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ and the $G$-invariant configurations of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ for all Dynkin diagrams. For the Dynkin diagrams $\mathbf{A} _ { n }$ and ${\bf D} _ { n }$ this classification was carried out in [[#References|[a4]]] and [[#References|[a5]]].
 +
 
 +
The classification of the possible configurations for the exceptional Dynkin diagrams ${\bf E} _ { 6 }$, $\mathbf{E} _ { 7 }$, $\mathbf{E} _ { 8 }$ turned out to be more difficult. Fortunately, the development of [[Tilting theory|tilting theory]] offered a convenient way for a solution. Namely, it was observed in [[#References|[a1]]] and [[#References|[a2]]] that in order to equip $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ with all possible configurations, one has to form the Auslander–Reiten quivers of the repetitive algebras of the tilted algebras of representation-finite hereditary algebras of type $\Delta$ (cf. also [[Tilted algebra|Tilted algebra]]). Nevertheless, the full classification of all these repetitive algebras eventually obtained in [[#References|[a7]]] required the use of a computer for handling the huge amount of structures appearing in the case $\mathbf{E} _ { 8 }$.
 +
 
 +
If one finally wants to return from the Auslander–Reiten quiver $\Gamma _ { A }$ to the algebra $A$ itself, one considers the factor of the free $k$-linear category of $\Gamma _ { A }$ by the mesh relations induced by the almost-split sequences. This factor is called the mesh category of $\Gamma _ { A }$. Forming the endomorphism algebra of the direct sum of all projective objects in this mesh category yields $A$ (up to [[Morita equivalence|Morita equivalence]]), provided that $A$ is standard (i.e. the mesh category is equivalent to the category of indecomposable finite-dimensional $A$-modules). Non-standard algebras appear only if the characteristic of the field $k$ is $2$ and $\Delta$ is of type ${\bf D} _ { n }$. They were classified in [[#References|[a6]]] and [[#References|[a9]]].
  
 
It is worth noting that the approach using repetitive algebras was generalized in order to classify the representation-tame self-injective standard algebras of polynomial growth in [[#References|[a8]]]. In this case tilted algebras of representation-tame hereditary and canonical algebras replace the tilted algebras of representation-finite hereditary algebras.
 
It is worth noting that the approach using repetitive algebras was generalized in order to classify the representation-tame self-injective standard algebras of polynomial growth in [[#References|[a8]]]. In this case tilted algebras of representation-tame hereditary and canonical algebras replace the tilted algebras of representation-finite hereditary algebras.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  O. Bretscher,  C. Läser,  C. Riedtmann,  "Selfinjective and simply connected algebras"  ''Manuscripta Math.'' , '''36'''  (1981/82)  pp. 253–307</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  D. Hughes,  J. Waschbüsch,  "Trivial extensions of tilted algebras"  ''Proc. London Math. Soc.'' , '''46'''  (1983)  pp. 347–364</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  C. Riedtmann,  "Algebren, Darstellungen, Überlagerungen und zurück"  ''Comment. Math. Helv.'' , '''55'''  (1980)  pp. 199–224</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  C. Riedtmann,  "Representation-finite selfinjective algebras of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010090.png" />" , ''Representation theory II'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer  (1981)  pp. 449–520</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  C. Riedtmann,  "Configurations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010091.png" />"  ''J. Algebra'' , '''82'''  (1983)  pp. 309–327</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  C. Riedtmann,  "Representation-finite self-injective algebras of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010092.png" />"  ''Compositio Math.'' , '''49'''  (1983)  pp. 231–282</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  B. Roggon,  "Selfinjective and iterated tilted algebras of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010093.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010094.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010095.png" />" , ''E 95-008 SFB'' , '''343''' , Bielefeld  (1995)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  A. Skowroński,  "Selfinjective algebras of polynomial growth"  ''Math. Ann.'' , '''285'''  (1989)  pp. 177–199</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top">  J. Waschbüsch,  "Symmetrische Algebren vom endlichen Modultyp"  ''J. Reine Angew. Math.'' , '''321'''  (1981)  pp. 78–98</TD></TR></table>
+
<table>
 +
<tr><td valign="top">[a1]</td> <td valign="top">  O. Bretscher,  C. Läser,  C. Riedtmann,  "Selfinjective and simply connected algebras"  ''Manuscripta Math.'' , '''36'''  (1981/82)  pp. 253–307</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  D. Hughes,  J. Waschbüsch,  "Trivial extensions of tilted algebras"  ''Proc. London Math. Soc.'' , '''46'''  (1983)  pp. 347–364</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  C. Riedtmann,  "Algebren, Darstellungen, Überlagerungen und zurück"  ''Comment. Math. Helv.'' , '''55'''  (1980)  pp. 199–224</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  C. Riedtmann,  "Representation-finite selfinjective algebras of class $\mathbf{A} _ { n }$" , ''Representation theory II'' , ''Lecture Notes in Mathematics'' , '''832''' , Springer  (1981)  pp. 449–520</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  C. Riedtmann,  "Configurations of $\mathbf{ZD}_n$"  ''J. Algebra'' , '''82'''  (1983)  pp. 309–327</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  C. Riedtmann,  "Representation-finite self-injective algebras of class ${\bf D} _ { n }$"  ''Compositio Math.'' , '''49'''  (1983)  pp. 231–282</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  B. Roggon,  "Selfinjective and iterated tilted algebras of type ${\bf E} _ { 6 }$, $\mathbf{E}_{7}$, $\mathbf{E} _ { 8 }$" , ''E 95-008 SFB'' , '''343''' , Bielefeld  (1995)</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  A. Skowroński,  "Selfinjective algebras of polynomial growth"  ''Math. Ann.'' , '''285'''  (1989)  pp. 177–199</td></tr><tr><td valign="top">[a9]</td> <td valign="top">  J. Waschbüsch,  "Symmetrische Algebren vom endlichen Modultyp"  ''J. Reine Angew. Math.'' , '''321'''  (1981)  pp. 78–98</td></tr>
 +
</table>
 +
 
 +
[[Category:Associative rings and algebras]]

Latest revision as of 08:04, 25 November 2023

A finite-dimensional algebra $A$ over an algebraically closed field $k$ is called self-injective if $A$, considered as a right $A$-module, is injective (cf. also Injective module). Well-known examples for self-injective algebras are the group algebras $k G$ for finite groups $G$ (cf. also Group algebra). An arbitrary finite-dimensional algebra $A$ is said to be representation-finite provided that there are only finitely many isomorphism classes of indecomposable finite-dimensional right $A$-modules.

C. Riedtmann made the main contribution to the classification of all self-injective algebras that are representation-finite. Her key idea was not to look at the algebra $A$ itself, but rather at its Auslander–Reiten quiver $\Gamma_{A}$. (Quiver is an abbreviation for directed graph, see Quiver.) The vertices of the Auslander–Reiten quiver (see also Representation of an associative algebra) are the isomorphism classes of finite-dimensional $A$-modules. The number of arrows from the isomorphism class of $X$ to the isomorphism class of $Y$ is the dimension of the space $\operatorname{rad}_{A}(X, Y) / \operatorname{rad}_{ A } ^ { 2 } ( X , Y )$, where $\operatorname { rad }$ is the Jacobson radical of the category of all finite-dimensional $A$-modules. The Auslander–Reiten quiver is a translation quiver, which means that it carries an additional structure, namely a translation $\tau_{A}$ mapping the non-projective vertices bijectively to the non-injective vertices. The translation is induced by the existence of almost-spit sequences $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ (see also Representation of an associative algebra; Almost-split sequence) and sends the isomorphism class of a non-projective indecomposable module $Z$ to the starting term $X$.

The stable part $( \Gamma _ { A } ) _ { s }$ of the Auslander–Reiten quiver $\Gamma _ { A }$ of $A$ is the full subquiver of $\Gamma _ { A }$ given by the modules that cannot be shifted into an injective or projective vertex by a power $\tau _ { A } ^ { j }$ for some integer $j$. In [a3], Riedtmann succeeded to prove that for any connected representation-finite finite-dimensional $A$ the stable part $( \Gamma _ { A } ) _ { s }$ of the Auslander–Reiten quiver is of the shape $\mathbf{Z} \overset{\rightharpoonup}{ \Delta } / G$, where $\overset{\rightharpoonup} { \Delta }$ is a quiver whose underlying graph $\Delta$ is a Dynkin diagram $\mathbf{A} _ { n }$ ($n \in \mathbf N$), ${\bf D} _ { n }$ ($n \in \mathbf N$, $> 4$), or $\mathbf{E} _ { n }$ ($n = 6,7,8$) and $G$ is an infinite cyclic group of automorphisms of the translation quiver $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$. The vertices of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ are the pairs $( i , x )$ such that $i$ is an integer and $x$ a vertex of $\overset{\rightharpoonup} { \Delta }$. From $( i , x )$ to $( i , y )$ there are the arrows $( i , \alpha )$ with $\alpha : x \rightarrow y$ an arrow of $\overset{\rightharpoonup} { \Delta }$. In addition, from $( i + 1 , x )$ to $( i , y )$ there exist the arrows $( i , \alpha ) ^ { \prime }$ with $\alpha : y \rightarrow x$ an arrow of $\overset{\rightharpoonup} { \Delta }$. The translation maps $( i , x )$ to $( i + 1 , x )$.

For a self-injective algebra $A$, the only vertices of the Auslander–Reiten quiver that do not belong to $( \Gamma _ { A } ) _ { s }$ are the isomorphism classes of the indecomposable projective (and injective) modules. Thus, one can reconstruct $\Gamma _ { A }$ from $( \Gamma _ { A } ) _ { s }$ by finding in $( \Gamma _ { A } ) _ { s }$ the starting points of arrows of $\Gamma _ { A }$ ending in projective vertices. These combinatorial data are called a configuration. This shows that for finding all possible Auslander–Reiten quivers $\Gamma _ { A }$ of all connected representation-finite self-injective algebras $A$ one has to classify the infinite cyclic automorphism groups $G$ of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ and the $G$-invariant configurations of $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ for all Dynkin diagrams. For the Dynkin diagrams $\mathbf{A} _ { n }$ and ${\bf D} _ { n }$ this classification was carried out in [a4] and [a5].

The classification of the possible configurations for the exceptional Dynkin diagrams ${\bf E} _ { 6 }$, $\mathbf{E} _ { 7 }$, $\mathbf{E} _ { 8 }$ turned out to be more difficult. Fortunately, the development of tilting theory offered a convenient way for a solution. Namely, it was observed in [a1] and [a2] that in order to equip $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ with all possible configurations, one has to form the Auslander–Reiten quivers of the repetitive algebras of the tilted algebras of representation-finite hereditary algebras of type $\Delta$ (cf. also Tilted algebra). Nevertheless, the full classification of all these repetitive algebras eventually obtained in [a7] required the use of a computer for handling the huge amount of structures appearing in the case $\mathbf{E} _ { 8 }$.

If one finally wants to return from the Auslander–Reiten quiver $\Gamma _ { A }$ to the algebra $A$ itself, one considers the factor of the free $k$-linear category of $\Gamma _ { A }$ by the mesh relations induced by the almost-split sequences. This factor is called the mesh category of $\Gamma _ { A }$. Forming the endomorphism algebra of the direct sum of all projective objects in this mesh category yields $A$ (up to Morita equivalence), provided that $A$ is standard (i.e. the mesh category is equivalent to the category of indecomposable finite-dimensional $A$-modules). Non-standard algebras appear only if the characteristic of the field $k$ is $2$ and $\Delta$ is of type ${\bf D} _ { n }$. They were classified in [a6] and [a9].

It is worth noting that the approach using repetitive algebras was generalized in order to classify the representation-tame self-injective standard algebras of polynomial growth in [a8]. In this case tilted algebras of representation-tame hereditary and canonical algebras replace the tilted algebras of representation-finite hereditary algebras.

References

[a1] O. Bretscher, C. Läser, C. Riedtmann, "Selfinjective and simply connected algebras" Manuscripta Math. , 36 (1981/82) pp. 253–307
[a2] D. Hughes, J. Waschbüsch, "Trivial extensions of tilted algebras" Proc. London Math. Soc. , 46 (1983) pp. 347–364
[a3] C. Riedtmann, "Algebren, Darstellungen, Überlagerungen und zurück" Comment. Math. Helv. , 55 (1980) pp. 199–224
[a4] C. Riedtmann, "Representation-finite selfinjective algebras of class $\mathbf{A} _ { n }$" , Representation theory II , Lecture Notes in Mathematics , 832 , Springer (1981) pp. 449–520
[a5] C. Riedtmann, "Configurations of $\mathbf{ZD}_n$" J. Algebra , 82 (1983) pp. 309–327
[a6] C. Riedtmann, "Representation-finite self-injective algebras of class ${\bf D} _ { n }$" Compositio Math. , 49 (1983) pp. 231–282
[a7] B. Roggon, "Selfinjective and iterated tilted algebras of type ${\bf E} _ { 6 }$, $\mathbf{E}_{7}$, $\mathbf{E} _ { 8 }$" , E 95-008 SFB , 343 , Bielefeld (1995)
[a8] A. Skowroński, "Selfinjective algebras of polynomial growth" Math. Ann. , 285 (1989) pp. 177–199
[a9] J. Waschbüsch, "Symmetrische Algebren vom endlichen Modultyp" J. Reine Angew. Math. , 321 (1981) pp. 78–98
How to Cite This Entry:
Riedtmann classification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riedtmann_classification&oldid=14608
This article was adapted from an original article by Peter Dräxler (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article