Namespaces
Variants
Actions

Difference between revisions of "Relatively-compact set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Expanded article: Relatively-compact set)
m (→‎References: isbn link)
 
Line 10: Line 10:
  
 
====References====
 
====References====
* N. Bourbaki, "General Topology" Volume 4 Ch.5-10, Springer [1974] (2007) ISBN 3-540-34399-7 {{ZBL|1107.54002}}
+
* N. Bourbaki, "General Topology" Volume 4 Ch.5-10, Springer [1974] (2007) {{ISBN|3-540-34399-7}} {{ZBL|1107.54002}}
* G. Gierz, Karl Heinrich Hofmann, K. Keimel, J.D. Lawson, M. Mislove, Dana S. Scott, "A compendium of continuous lattices" Springer (1980)  ISBN 3-540-10111-X {{MR|0614752}}  {{ZBL|0452.06001}}
+
* G. Gierz, Karl Heinrich Hofmann, K. Keimel, J.D. Lawson, M. Mislove, Dana S. Scott, "A compendium of continuous lattices" Springer (1980)  {{ISBN|3-540-10111-X}} {{MR|0614752}}  {{ZBL|0452.06001}}

Latest revision as of 19:36, 17 November 2023

2020 Mathematics Subject Classification: Primary: 54D30 [MSN][ZBL]

A subset $A$ of a topological space $X$ with the property that the closure $\bar A$ of $A$ in $X$ is compact.

A subset $A$ of a metric space $X$ is relatively compact if and only if every sequence of points in $A$ has a cluster point in $X$.

A space is compact if it is relatively compact in itself.

An alternative definition is that $A$ is relatively compact in $X$ if and only if every open cover of $X$ contains a finite subcover of $A$. This formulation is equivalent to requiring that the set $A$ be way below $X$ with respect to set inclusion and the directed set of open subsets of $X$.

References

  • N. Bourbaki, "General Topology" Volume 4 Ch.5-10, Springer [1974] (2007) ISBN 3-540-34399-7 Zbl 1107.54002
  • G. Gierz, Karl Heinrich Hofmann, K. Keimel, J.D. Lawson, M. Mislove, Dana S. Scott, "A compendium of continuous lattices" Springer (1980) ISBN 3-540-10111-X MR0614752 Zbl 0452.06001
How to Cite This Entry:
Relatively-compact set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Relatively-compact_set&oldid=51470
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article