Difference between revisions of "Balanced category"
From Encyclopedia of Mathematics
(Start article: Balanced category) |
m (→References: isbn link) |
||
Line 4: | Line 4: | ||
====References==== | ====References==== | ||
− | * Roy L. Crole, "Categories for types", Cambridge University Press (1993) ISBN 0-521-45701-7 | + | * Roy L. Crole, "Categories for types", Cambridge University Press (1993) {{ISBN|0-521-45701-7}} {{ZBL|0837.68077}} |
* P.T. Johnstone,"Topos theory", Academic Press (1977) {{MR|0470019}} {{ZBL|0368.18001}} | * P.T. Johnstone,"Topos theory", Academic Press (1977) {{MR|0470019}} {{ZBL|0368.18001}} |
Latest revision as of 19:32, 15 November 2023
2020 Mathematics Subject Classification: Primary: 18A05 Secondary: 18A20 [MSN][ZBL]
A category in which any morphism that is both a monomorphism and an epimorphism is an isomorphism.
References
- Roy L. Crole, "Categories for types", Cambridge University Press (1993) ISBN 0-521-45701-7 Zbl 0837.68077
- P.T. Johnstone,"Topos theory", Academic Press (1977) MR0470019 Zbl 0368.18001
How to Cite This Entry:
Balanced category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Balanced_category&oldid=51475
Balanced category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Balanced_category&oldid=51475