Difference between revisions of "Polar body"
(add boundedness condition, see talk page) |
m (→References: isbn link) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
{{TEX|done}}{{MSC|52A05}} | {{TEX|done}}{{MSC|52A05}} | ||
− | Let $V$ be a real vector space with inner product $\langle , \rangle$. The ''polar set'' $X^\circ$ of a subset $X$ of $V$ is | + | Let $V$ be a finite-dimensional real vector space with inner product $\langle , \rangle$. The ''polar set'' $X^\circ$ of a subset $X$ of $V$ is |
$$ | $$ | ||
X^\circ = \{ y \in V : \langle x,y \rangle \le 1 \ \text{for all}\ x \in X \} \ . | X^\circ = \{ y \in V : \langle x,y \rangle \le 1 \ \text{for all}\ x \in X \} \ . | ||
Line 14: | Line 14: | ||
====References==== | ====References==== | ||
− | * Arne Brøndsted, "An introduction to convex polytopes" Graduate Texts in Mathematics '''90''' Springer 1983 ISBN 0-387-90722-X {{ZBL|0509.52001}} | + | * Arne Brøndsted, "An introduction to convex polytopes" Graduate Texts in Mathematics '''90''' Springer 1983 {{ISBN|0-387-90722-X}} {{ZBL|0509.52001}} |
− | * Rolf Schneider, "Convex Bodies: The Brunn–Minkowski Theory" (2 ed.) Encyclopedia of Mathematics and its Applications '''151''' Cambridge University Press (2014} ISBN 1-107-60101-0 {{ZBL|1287.52001}} | + | * Rolf Schneider, "Convex Bodies: The Brunn–Minkowski Theory" (2 ed.) Encyclopedia of Mathematics and its Applications '''151''' Cambridge University Press (2014} {{ISBN|1-107-60101-0}} {{ZBL|1287.52001}} |
Latest revision as of 14:16, 12 November 2023
2020 Mathematics Subject Classification: Primary: 52A05 [MSN][ZBL]
Let $V$ be a finite-dimensional real vector space with inner product $\langle , \rangle$. The polar set $X^\circ$ of a subset $X$ of $V$ is $$ X^\circ = \{ y \in V : \langle x,y \rangle \le 1 \ \text{for all}\ x \in X \} \ . $$
If $K$ is a bounded convex set containing the zero element in its interior then $K^\circ$ is called the polar body of $K$ and is a compact convex neighbourhood of the origin.
The support function of $X$ may be defined in terms of the polar set by $H_X(u)=\inf\left\{\rho > 0\colon u\in \rho X^\circ \right\}$, and similarly the distance function is given by $D_X(x)=\sup\left\{\langle x,u \rangle \colon u\in X^\circ \right\}$. Given a distance function $D(x)$, the corresponding closed convex set is defined by $X=\left\{x\in E^n\colon D(x)\leq 1\right\}$.
See also: Blaschke–Santaló inequality.
References
- Arne Brøndsted, "An introduction to convex polytopes" Graduate Texts in Mathematics 90 Springer 1983 ISBN 0-387-90722-X Zbl 0509.52001
- Rolf Schneider, "Convex Bodies: The Brunn–Minkowski Theory" (2 ed.) Encyclopedia of Mathematics and its Applications 151 Cambridge University Press (2014} ISBN 1-107-60101-0 Zbl 1287.52001
Polar body. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polar_body&oldid=42189