|
|
(6 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101901.png" /> be a set. Define sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101902.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101903.png" />, inductively as follows:
| + | {{TEX|done}}{{MSC|08B20}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101904.png" /></td> </tr></table>
| + | A free algebra in the variety of magma. The free magma on a set $X$ of free generators coincides with the set of all bracketed [[word]]s in the elements of $X$. Define sets $X_n$, $N \ge 1$, inductively as follows: |
| + | $$ |
| + | X_1 = X |
| + | $$ |
| + | $$ |
| + | X_{n+1} = \coprod_{p+q=n} X_p \times X_q |
| + | $$ |
| + | where $\coprod$ denotes the disjoint union (see [[Union of sets|Union of sets]]). Let |
| + | $$ |
| + | M_X = \coprod_n X_n |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101905.png" /></td> </tr></table>
| + | There is an obvious [[binary operation]] on $M_X$: if $v \in X_p$, $w \in X_q$, then the pair $(v,w)$ goes to the element $(v,w)$ of $X_{p+q}$. This is the free magma on $X$. It has the obvious freeness property: if $N$ is any [[magma]] and $g : X \rightarrow N$ is a function, then there is a unique morphism of magmas $\tilde g : M_X \rightarrow N$ extending $g$. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101906.png" /> denotes the disjoint union (see [[Union of sets|Union of sets]]). Let
| + | Certain special subsets of $M_X$, called [[Hall set]]s (also [[Lazard set]]s), are important in combinatorics and the theory of Lie algebras. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101907.png" /></td> </tr></table>
| + | The free magma over $X$ can be identified with the set of binary complete, planar, [[rooted tree]]s with leaves labelled by $X$. See [[Binary tree]]. |
− | | |
− | There is an obvious [[binary operation]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101908.png" />: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f1101909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019010.png" />, then the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019011.png" /> goes to the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019013.png" />. This is the free magma on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019014.png" />. It has the obvious freeness property: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019015.png" /> is any [[Magma|magma]] and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019016.png" /> is a function, then there is a unique morphism of magmas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019017.png" /> extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019018.png" />.
| |
− | | |
− | Certain special subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019019.png" />, called Hall sets (cf. [[Hall set|Hall set]]), are important in combinatorics and the theory of Lie algebras.
| |
− | | |
− | The free magma over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019020.png" /> can be identified with the set of binary complete, planar, rooted trees with leaves labelled by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f110/f110190/f11019021.png" />. See [[Binary tree|Binary tree]]. | |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , '''2: Algèbres de Lie libres''' , Hermann (1972)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C. Reutenauer, "Free Lie algebras" , Oxford Univ. Press (1993)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , '''2: Algèbres de Lie libres''' , Hermann (1972)</TD></TR> |
| + | <TR><TD valign="top">[a2]</TD> <TD valign="top"> C. Reutenauer, "Free Lie algebras" , Oxford Univ. Press (1993) {{ZBL|0798.17001}}</TD></TR> |
| + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) {{ZBL|0132.27803}}</TD></TR> |
| + | </table> |
2020 Mathematics Subject Classification: Primary: 08B20 [MSN][ZBL]
A free algebra in the variety of magma. The free magma on a set $X$ of free generators coincides with the set of all bracketed words in the elements of $X$. Define sets $X_n$, $N \ge 1$, inductively as follows:
$$
X_1 = X
$$
$$
X_{n+1} = \coprod_{p+q=n} X_p \times X_q
$$
where $\coprod$ denotes the disjoint union (see Union of sets). Let
$$
M_X = \coprod_n X_n
$$
There is an obvious binary operation on $M_X$: if $v \in X_p$, $w \in X_q$, then the pair $(v,w)$ goes to the element $(v,w)$ of $X_{p+q}$. This is the free magma on $X$. It has the obvious freeness property: if $N$ is any magma and $g : X \rightarrow N$ is a function, then there is a unique morphism of magmas $\tilde g : M_X \rightarrow N$ extending $g$.
Certain special subsets of $M_X$, called Hall sets (also Lazard sets), are important in combinatorics and the theory of Lie algebras.
The free magma over $X$ can be identified with the set of binary complete, planar, rooted trees with leaves labelled by $X$. See Binary tree.
References
[a1] | N. Bourbaki, "Groupes et algèbres de Lie" , 2: Algèbres de Lie libres , Hermann (1972) |
[a2] | C. Reutenauer, "Free Lie algebras" , Oxford Univ. Press (1993) Zbl 0798.17001 |
[a3] | J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) Zbl 0132.27803 |