|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
| + | <!-- |
| + | c0265201.png |
| + | $#A+1 = 91 n = 0 |
| + | $#C+1 = 91 : ~/encyclopedia/old_files/data/C026/C.0206520 Correlation, |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''duality'' | | ''duality'' |
| | | |
− | A bijective mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265201.png" /> between projective spaces of the same finite dimension such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265202.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265203.png" />. The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265204.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265205.png" /> onto a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265206.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265207.png" /> is that there exists an anti-isomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265208.png" />, i.e. a bijective mapping for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c0265209.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652010.png" />; in that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652011.png" /> is dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652012.png" />. Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652013.png" />, the complex projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652014.png" /> and the quaternion projective spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652015.png" />. | + | A bijective mapping $ \kappa $ |
− | | + | between projective spaces of the same finite dimension such that $ S _ {p} \subset S _ {q} $ |
− | A polarity is an auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652016.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652017.png" />. A projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652018.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652019.png" /> admits a polarity if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652020.png" /> admits an involutory anti-automorphism, i.e. an anti-automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652021.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652022.png" />.
| + | implies $ \kappa ( S _ {q} ) \subset \kappa ( S _ {p} ) $. |
| + | The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space $ \Pi _ {n} ( K) $ |
| + | over a division ring $ K $ |
| + | onto a space $ \Pi _ {n} ( L) $ |
| + | over a division ring $ L $ |
| + | is that there exists an anti-isomorphism $ \alpha : K \rightarrow L $, |
| + | i.e. a bijective mapping for which $ \alpha ( x + y ) = \alpha ( x) + \alpha ( y) $, |
| + | $ \alpha ( x y ) = \alpha ( y) \alpha ( x) $; |
| + | in that case $ \Pi _ {n} ( L) $ |
| + | is dual to $ \Pi _ {n} ( K) $. |
| + | Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces $ ( K = \mathbf R , \alpha = \mathop{\rm id} ) $, |
| + | the complex projective spaces $ ( K = \mathbf C , \alpha : z \rightarrow \overline{z}\; ) $ |
| + | and the quaternion projective spaces $ ( K = \mathbf H , \alpha : z \rightarrow \overline{z}\; ) $. |
| | | |
− | A subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652023.png" /> is called a null subspace relative to an auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652024.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652025.png" /> for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652026.png" />, and strictly isotropic if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652027.png" />. Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also [[Polarity|Polarity]]). | + | A polarity is an auto-correlation $ \kappa $ |
| + | satisfying $ \kappa ^ {2} = \mathop{\rm id} $. |
| + | A projective space $ \Pi _ {n} ( K) $ |
| + | over a division ring $ K $ |
| + | admits a polarity if and only if $ K $ |
| + | admits an involutory anti-automorphism, i.e. an anti-automorphism $ \alpha $ |
| + | with $ \alpha ^ {2} = \mathop{\rm id} $. |
| | | |
− | Let the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652028.png" /> over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652029.png" /> be interpreted as the set of linear subspaces of the (left) linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652030.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652031.png" />. A semi-bilinear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652032.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652033.png" /> together with an anti-automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652034.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652035.png" /> such that
| + | A subspace $ W $ |
| + | is called a null subspace relative to an auto-correlation $ \kappa $ |
| + | if $ P \subset \kappa ( P) $ |
| + | for any point $ P \in W $, |
| + | and strictly isotropic if $ W \subset \kappa ( W) $. |
| + | Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also [[Polarity|Polarity]]). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652036.png" /></td> </tr></table>
| + | Let the projective space $ \Pi _ {n} ( K) $ |
| + | over a division ring $ K $ |
| + | be interpreted as the set of linear subspaces of the (left) linear space $ K ^ {n+} 1 $ |
| + | over $ K $. |
| + | A semi-bilinear form on $ K ^ {n+} 1 $ |
| + | is a mapping $ f : K ^ {n+} 1 \times K ^ {n+} 1 \rightarrow K $ |
| + | together with an anti-automorphism $ \alpha $ |
| + | of $ K $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652037.png" /></td> </tr></table>
| + | $$ |
| + | f ( x + y , z ) = \ |
| + | f ( x , z ) + f ( y , z ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652038.png" /></td> </tr></table>
| + | $$ |
| + | f ( x , y + z ) = f ( x , y ) + f ( x , z ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652039.png" /></td> </tr></table>
| + | $$ |
| + | f ( k x , y ) = k f ( x , y ) , |
| + | $$ |
| | | |
− | In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652040.png" /> is a field and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652042.png" /> is a bilinear form. A semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652043.png" /> is called non-degenerate provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652044.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652045.png" /> (all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652046.png" />) implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652047.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652048.png" />, respectively). Any auto-correlation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652049.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652050.png" /> can be represented with the aid of a non-degenerate semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652051.png" /> in the following way: for a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652052.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652053.png" /> its image is the orthogonal complement of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652054.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652055.png" />:
| + | $$ |
| + | f ( x , k y ) = f ( x , y ) \alpha ( k) . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652056.png" /></td> </tr></table>
| + | In particular, if $ K $ |
| + | is a field and $ \alpha = \mathop{\rm id} $, |
| + | then $ f $ |
| + | is a bilinear form. A semi-bilinear form $ f $ |
| + | is called non-degenerate provided $ f ( x , y ) = 0 $ |
| + | for all $ x $( |
| + | all $ y $) |
| + | implies $ y = 0 $( |
| + | $ x = 0 $, |
| + | respectively). Any auto-correlation $ \kappa $ |
| + | of $ \Pi _ {n} ( K) $ |
| + | can be represented with the aid of a non-degenerate semi-bilinear form $ f $ |
| + | in the following way: for a subspace $ V $ |
| + | of $ K ^ {n+} 1 $ |
| + | its image is the orthogonal complement of $ V $ |
| + | with respect to $ f $: |
| | | |
− | (the Birkhoff–von Neumann theorem, ). <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652057.png" /> is a polarity if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652058.png" /> is reflexive, i.e. if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652059.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652060.png" />. By multiplying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652061.png" /> by a suitable element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652062.png" /> one can bring any reflexive non-degenerate semi-bilinear form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652063.png" /> and the corresponding automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652064.png" /> in either of the following two forms: | + | $$ |
| + | \kappa ( V) = \{ {y \in K ^ {n+} 1 } : {f ( x , y ) = 0 \textrm{ for all } \ |
| + | x \in V } \} |
| + | $$ |
| | | |
− | 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652065.png" /> is an involution, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652066.png" />, and
| + | (the Birkhoff–von Neumann theorem, ). $ \kappa $ |
| + | is a polarity if and only if $ f $ |
| + | is reflexive, i.e. if $ f ( x , y ) = 0 $ |
| + | implies $ f ( y , x ) = 0 $. |
| + | By multiplying $ f $ |
| + | by a suitable element of $ K $ |
| + | one can bring any reflexive non-degenerate semi-bilinear form $ f $ |
| + | and the corresponding automorphism $ \alpha $ |
| + | in either of the following two forms: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652067.png" /></td> </tr></table>
| + | 1) $ \alpha $ |
| + | is an involution, i.e. $ \alpha ^ {2} = \mathop{\rm id} $, |
| + | and |
| | | |
− | In this case one calls <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652068.png" /> symmetric if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652069.png" /> (and hence necessarily <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652070.png" /> is a field) and Hermitian if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652071.png" />.
| + | $$ |
| + | f ( y , x ) = \alpha ( f ( x , y ) ) . |
| + | $$ |
| | | |
− | 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652072.png" /> (and hence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652073.png" /> is a field) and
| + | In this case one calls $ f $ |
| + | symmetric if $ \alpha = \mathop{\rm id} $( |
| + | and hence necessarily $ K $ |
| + | is a field) and Hermitian if $ \alpha \neq \mathop{\rm id} $. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652074.png" /></td> </tr></table>
| + | 2) $ \alpha = \mathop{\rm id} $( |
| + | and hence $ K $ |
| + | is a field) and |
| | | |
− | Such an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652075.png" /> is called anti-symmetric.
| + | $$ |
| + | f ( y , x ) = - |
| + | f ( x , y ) . |
| + | $$ |
| | | |
− | A special example of a correlation is the following. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652076.png" /> be a projective space over a division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652077.png" />. Define the opposite division ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652078.png" /> as the set of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652079.png" /> with the same addition but with multiplication
| + | Such an $ f $ |
| + | is called anti-symmetric. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652080.png" /></td> </tr></table>
| + | A special example of a correlation is the following. Let $ \Pi _ {n} ( K) $ |
| + | be a projective space over a division ring $ K $. |
| + | Define the opposite division ring $ K ^ {o} $ |
| + | as the set of elements of $ K $ |
| + | with the same addition but with multiplication |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652081.png" /> is an anti-isomorphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652082.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652083.png" /> which defines the canonical correlation from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652084.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652085.png" />. The (left) projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652086.png" />, which can be identified with the right projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652087.png" />, i.e. with the set of linear subspaces of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652088.png" />-dimensional right vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652089.png" />, is the (canonical) dual space of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652090.png" /> (cf. [[Projective algebra|Projective algebra]], the construction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c026/c026520/c02652091.png" />).
| + | $$ |
| + | x \cdot y = \ |
| + | y x . |
| + | $$ |
| | | |
− | ====Comments====
| + | $ \alpha : x \rightarrow x $ |
| + | is an anti-isomorphism from $ K $ |
| + | onto $ K ^ {o} $ |
| + | which defines the canonical correlation from $ \Pi _ {n} ( K) $ |
| + | onto $ \Pi _ {n} ( K ^ {o} ) $. |
| + | The (left) projective space $ \Pi _ {n} ( K ^ {o} ) $, |
| + | which can be identified with the right projective space $ \Pi _ {n} ( K) ^ {*} $, |
| + | i.e. with the set of linear subspaces of the $ ( n + 1 ) $- |
| + | dimensional right vector space $ K ^ {n+} 1 $, |
| + | is the (canonical) dual space of $ \Pi _ {n} ( K) $( |
| + | cf. [[Projective algebra]], the construction of $ \Pi _ {n} $). |
| | | |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Birkhoff, J. von Neumann, "The logic of quantum mechanics" ''Ann. of Math.'' , '''37''' (1936) pp. 823–843</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.R. Hughes, F.C. Piper, "Projective planes" , Springer (1972)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Birkhoff, J. von Neumann, "The logic of quantum mechanics" ''Ann. of Math.'' , '''37''' (1936) pp. 823–843</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1963)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.R. Hughes, F.C. Piper, "Projective planes" , Springer (1972)</TD></TR></table> |
duality
A bijective mapping $ \kappa $
between projective spaces of the same finite dimension such that $ S _ {p} \subset S _ {q} $
implies $ \kappa ( S _ {q} ) \subset \kappa ( S _ {p} ) $.
The image of a sum of subspaces under a correlation is the intersection of their images and, conversely, the image of an intersection is the sum of the images. In particular, the image of a point is a hyperplane and vice versa. A necessary and sufficient condition for the existence of a correlation of a projective space $ \Pi _ {n} ( K) $
over a division ring $ K $
onto a space $ \Pi _ {n} ( L) $
over a division ring $ L $
is that there exists an anti-isomorphism $ \alpha : K \rightarrow L $,
i.e. a bijective mapping for which $ \alpha ( x + y ) = \alpha ( x) + \alpha ( y) $,
$ \alpha ( x y ) = \alpha ( y) \alpha ( x) $;
in that case $ \Pi _ {n} ( L) $
is dual to $ \Pi _ {n} ( K) $.
Examples of spaces with an auto-correlation, i.e. a correlation onto itself, are the real projective spaces $ ( K = \mathbf R , \alpha = \mathop{\rm id} ) $,
the complex projective spaces $ ( K = \mathbf C , \alpha : z \rightarrow \overline{z}\; ) $
and the quaternion projective spaces $ ( K = \mathbf H , \alpha : z \rightarrow \overline{z}\; ) $.
A polarity is an auto-correlation $ \kappa $
satisfying $ \kappa ^ {2} = \mathop{\rm id} $.
A projective space $ \Pi _ {n} ( K) $
over a division ring $ K $
admits a polarity if and only if $ K $
admits an involutory anti-automorphism, i.e. an anti-automorphism $ \alpha $
with $ \alpha ^ {2} = \mathop{\rm id} $.
A subspace $ W $
is called a null subspace relative to an auto-correlation $ \kappa $
if $ P \subset \kappa ( P) $
for any point $ P \in W $,
and strictly isotropic if $ W \subset \kappa ( W) $.
Any strictly isotropic subspace is a null subspace. A polarity relative to which the whole space is a null space is called a null (or symplectic) polarity (see also Polarity).
Let the projective space $ \Pi _ {n} ( K) $
over a division ring $ K $
be interpreted as the set of linear subspaces of the (left) linear space $ K ^ {n+} 1 $
over $ K $.
A semi-bilinear form on $ K ^ {n+} 1 $
is a mapping $ f : K ^ {n+} 1 \times K ^ {n+} 1 \rightarrow K $
together with an anti-automorphism $ \alpha $
of $ K $
such that
$$
f ( x + y , z ) = \
f ( x , z ) + f ( y , z ) ,
$$
$$
f ( x , y + z ) = f ( x , y ) + f ( x , z ) ,
$$
$$
f ( k x , y ) = k f ( x , y ) ,
$$
$$
f ( x , k y ) = f ( x , y ) \alpha ( k) .
$$
In particular, if $ K $
is a field and $ \alpha = \mathop{\rm id} $,
then $ f $
is a bilinear form. A semi-bilinear form $ f $
is called non-degenerate provided $ f ( x , y ) = 0 $
for all $ x $(
all $ y $)
implies $ y = 0 $(
$ x = 0 $,
respectively). Any auto-correlation $ \kappa $
of $ \Pi _ {n} ( K) $
can be represented with the aid of a non-degenerate semi-bilinear form $ f $
in the following way: for a subspace $ V $
of $ K ^ {n+} 1 $
its image is the orthogonal complement of $ V $
with respect to $ f $:
$$
\kappa ( V) = \{ {y \in K ^ {n+} 1 } : {f ( x , y ) = 0 \textrm{ for all } \
x \in V } \}
$$
(the Birkhoff–von Neumann theorem, ). $ \kappa $
is a polarity if and only if $ f $
is reflexive, i.e. if $ f ( x , y ) = 0 $
implies $ f ( y , x ) = 0 $.
By multiplying $ f $
by a suitable element of $ K $
one can bring any reflexive non-degenerate semi-bilinear form $ f $
and the corresponding automorphism $ \alpha $
in either of the following two forms:
1) $ \alpha $
is an involution, i.e. $ \alpha ^ {2} = \mathop{\rm id} $,
and
$$
f ( y , x ) = \alpha ( f ( x , y ) ) .
$$
In this case one calls $ f $
symmetric if $ \alpha = \mathop{\rm id} $(
and hence necessarily $ K $
is a field) and Hermitian if $ \alpha \neq \mathop{\rm id} $.
2) $ \alpha = \mathop{\rm id} $(
and hence $ K $
is a field) and
$$
f ( y , x ) = -
f ( x , y ) .
$$
Such an $ f $
is called anti-symmetric.
A special example of a correlation is the following. Let $ \Pi _ {n} ( K) $
be a projective space over a division ring $ K $.
Define the opposite division ring $ K ^ {o} $
as the set of elements of $ K $
with the same addition but with multiplication
$$
x \cdot y = \
y x .
$$
$ \alpha : x \rightarrow x $
is an anti-isomorphism from $ K $
onto $ K ^ {o} $
which defines the canonical correlation from $ \Pi _ {n} ( K) $
onto $ \Pi _ {n} ( K ^ {o} ) $.
The (left) projective space $ \Pi _ {n} ( K ^ {o} ) $,
which can be identified with the right projective space $ \Pi _ {n} ( K) ^ {*} $,
i.e. with the set of linear subspaces of the $ ( n + 1 ) $-
dimensional right vector space $ K ^ {n+} 1 $,
is the (canonical) dual space of $ \Pi _ {n} ( K) $(
cf. Projective algebra, the construction of $ \Pi _ {n} $).
References
[a1] | R. Baer, "Linear algebra and projective geometry" , Acad. Press (1952) |
[a2] | G. Birkhoff, J. von Neumann, "The logic of quantum mechanics" Ann. of Math. , 37 (1936) pp. 823–843 |
[a3] | J.A. Dieudonné, "La géométrie des groups classiques" , Springer (1963) |
[a4] | D.R. Hughes, F.C. Piper, "Projective planes" , Springer (1972) |