Namespaces
Variants
Actions

Difference between revisions of "Invertible module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(gather refs)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
A [[Module|module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524901.png" /> over a [[Commutative ring|commutative ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524902.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524903.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524904.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524905.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524906.png" /> (as an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524907.png" />-modules). A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524908.png" /> is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524909.png" />. The classes of isomorphic invertible modules form the Picard group of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249010.png" />; the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249011.png" />. In the non-commutative case, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249012.png" />-bimodule, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249014.png" /> are associative rings, is called invertible if there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249016.png" />-bimodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249017.png" /> such that
+
<!--
 +
i0524901.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/I052/I.0502490 Invertible module
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249018.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
====References====
+
A [[module]] $M$ over a [[commutative ring]] $A$
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,   "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR></table>
+
for which there exists an $A$-module $N$ such that $M \otimes N $
 +
is isomorphic to $A$ (as $A$-modules). A module $M$ is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $A$.  
 +
 
 +
The classes of isomorphic invertible modules form the Picard group of the ring $A$;
 +
the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $A$.
  
 +
In the non-commutative case, an $(A, B) $-bimodule, where $A$
 +
and $B$
 +
are associative rings, is called invertible if there exists a $(B, A) $-
 +
bimodule $N$ such that
  
 +
$$
 +
M \otimes _ {B} N  \simeq  A \ \
 +
\textrm{ and } \ \
 +
N \otimes _ {A} M  \simeq  B .
 +
$$
  
 
====Comments====
 
====Comments====
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249019.png" />-modules, cf. [[#References|[a1]]], [[#References|[a2]]].
+
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $G$-modules, cf. [[#References|[a1]]], [[#References|[a2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR>
 +
</table>

Latest revision as of 18:37, 11 April 2023


A module $M$ over a commutative ring $A$ for which there exists an $A$-module $N$ such that $M \otimes N $ is isomorphic to $A$ (as $A$-modules). A module $M$ is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $A$.

The classes of isomorphic invertible modules form the Picard group of the ring $A$; the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $A$.

In the non-commutative case, an $(A, B) $-bimodule, where $A$ and $B$ are associative rings, is called invertible if there exists a $(B, A) $- bimodule $N$ such that

$$ M \otimes _ {B} N \simeq A \ \ \textrm{ and } \ \ N \otimes _ {A} M \simeq B . $$

Comments

The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $G$-modules, cf. [a1], [a2].

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[a1] A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" Proc. London Math. Soc. , 180 (1973) pp. 1–45
[a2] A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" Proc. London Math. Soc. , 180 (1973) pp. 405–434
How to Cite This Entry:
Invertible module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invertible_module&oldid=18662
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article